AD-A168 973 CZ EVAL MODEL DEVELOPMENT AND TEST VOLUME 2 PROGRAMMERS
MANUAL. . CU) INSTITUTE FOR DEFENSE ANALYSES ALEXANDRIA

YA R F ROBINSON ET AL. OCT 85 IDA-P-1882-VOL-2
UNCLASSIFIED IDA/HQ-85-30596 MDA9@3-84-C-0031

e TS el 0 s abig % B8 LA g gl T — o —
e, 0"« "'.‘P‘f,«'*,"'.a ’!‘a" L T A T T T T T T T Al e T R Sy g g Ay Y~ R TR —e)
¢] Sl gt ®, T T e frr a P V*

Vo -
w
» -
=
& il
AR

4
"
»
]
.

s
h' '

-

-‘ d
A

R -

. i K28 MZ.S

i 1.0 b= b= B

L]
ev—— 56 3.2
. || ———— :: = “u 2.2 i
: ———— = opes =
o

5 T “mz.o

e I I [=
- L] -t
. | —

———— 1.0

Al
- e A

e —— = E—]

S
o -

s -

D
* MICROCOPY RESOLUTION TEST CHART .

j NATIONAL BUREAU OF STANDARDS ~ 1963~ A 5 »_."-

= Lot

' -. f i

P" - ",

4 }\"..‘ i
L4 Nt
: N

;\.M..

‘l

x]

X S5O
: Lo
+ !::‘-::‘--:

: T
< -
] e
d woaTta
> w‘:‘.':.‘

[l .
j :._:'\‘S
4 NN
A o
a0\ O
('~~. ._!.
T N
hd * a
d f.-f.\‘,
) LA
At
: \"’\‘."

P s Bl DAy Wi DIVE LA AN N A S LA R A AR A AN A SN A U SR A A S P S i AN PR P A S s S A B A

A
E ' Copy 70 of 75 coples Qi
' v
* AD-A168 973 ;
, |:
’ .
. ¥
P, IDA PAPER P-1882 ;{
i
~ -
o)
C3 EVAL MODEL DEVELOPMENT AND TEST 2
Volume II: Programmers Manual ;
2 2
b E:
» Robert F. Robinson '
. Joseph W. Stahl A
- M. L. Roberson N
Applications Research Corporation f.
» D. W. Roberson X
h Applications Research Corporation
| =
o i:
] > October 1985]
N 8 L r
&) r.
' = %
e Prepared for
o e> Joint Chiefs of Staff i :(0
- E 4

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

o
X

S5 A DI AAREALRGLA DA SAC AR ADNEGONEAEASIA A SIS A G L At e s A B S A At A NG AL Ak Al Sl it Acd el et At Aot ied b otkiraton't oo

.

o
E UNCLASSIFIED
SECURITY CLASSWICATION OF THIS PAGE TR e P T
. 2N N R
-.',: REPORT DOCUMENTATION PAGE
:ﬂ ta. POR CURITY CLASSIFICA 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
-
Q [T2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
' . QD=Eerm-000dutvi-4=Cotobor-4000
[?
4 d .
n 7b. DECLASSWFICATION/DOWNGRADING SCHEDUL Approved for public relesss; distribution unlimited
; w.: NIA
f‘ :-f 4. PERFORMING ORGANIZATION REPORT NUMBER (8) 8. MONITORING ORGANIZATION REPORT NUMBER (S)
' IDA Paper P-1882
h‘: 6a. NAME OF PERFORMING ORGANIZATION b, ?'FFICE“ Slll:BOL 7a. NAME OF MONITORING ORGANIZATION
.: institute for Defense Analyses (1 applic) OUSORE (DoD-IDA Management Office)
- 6c. ADDRESS (City, State, and Zip Code) 7b. ADDRESS (CITY, STATE, ANMD 2IP CODE)
< 1801 N. Besuregard Street 1801 North Beauregard Street
S Alexandria, VA 22311 Alexandria, VA 22311
' 8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (M applicable)
Joint Chiefs of Staff (J-5) MDA 903 84 C 0031
K 8c. ADORESS (City, State, and Zip Code 10. SOURCE OF FUNDING NUMBERS
- -~ The Pentagon PROGRAM PROJECT TASK NO. ACCESSION NO.
R Washington, D.C. 20301-5000 ELEMENT NO. WORK UNIT
- T-8.300
- w
oA <,
h by 11. TITLE (include Security Classification)
™ (:3 EVAL MODEL DEVELOPMENT AND TEST - Volume N - Programmers Manual
K 12. PERSONAL AUTHOR (8).
> Robert F. Robinson, Joseph W. Stahi, M.L. Roberson (ARC), D.W. Robereon (ARC)
:') 13. TYPE OF REPORT ?ﬁonlls COVEnEl%o 14. DATE OF REPORT (Year, Month, Day) 18. PAGE COUNT
", . FINAL 1... October 222
‘ 16. SUPPLEMENTARY NOTATION
2 —-
o’ W, 17 COSATI CODES SUBJECT TERMS (Continue on reverse i necessary and ldonmy by block numbov)
o . c«numd Control, communications comba lndh dol oy. imulation,” games
EER FIELD GRouP sus-Group analysle, 'onoellvo'non. messures - '
- PN
L) \ -~
", -_\‘ 19. ABSTRACT (Continue on reverse i necessary snd identily by block number)
": This is an interim report on the extension and develop oﬂhoc EVALlnodoL The model is to permit assssement of the etfects on combat
‘. ".— of changes In command and contro) processes and com ications net otr and capacity. The model has had a partial pre-processor
- NG added to assist possible analyst/model users to Input data and a post-processor o provide graphic display of some outputs. The command
o ,J'. structure includes the Central Europesn command nodes from division to SHAPE for U.S. forces. The nodes have had Input snd output limita
o dded 1o permit rep tation of degraded operstion as under sttack or when the unit ie moving. The corps isvel forca allocation procedure
has been improved. Some processes have been rundomized. The corps operates on information different from that avaliable at the division or
- - combat unit due to time delays, randomnbess, and scenario Inputs. The Impact of changes in the c‘-yobm can be seen in changes In weapon
~ -. losses, non-arrival of close air support, and messages delaye/iost as well as olher operstions related elements.
¥ e
L e
l, Z
P)
. N\
L]
: -:’. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
g O uncrassipieorunuimren B same as apr. O omic usens
.
T
X E 22e. NAME OF RESPONSIBLE INOIVIDUAL 22b. TELEPHONE (Include Area Code) rze. OFFICE SYMBOL
~ DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted.
= . Al other editions are cbeolete
~ o SECURITY CLASSIFICATION OF THIS PAGE
: . UNCLASSIFIED
o
b

.l
&
-

4.

” :
] ::: .
' 5
E IDA PAPER P-1882 :
¢
- C3 EVAL MODEL DEVELOPMENT AND TEST :
Volume II: Programmers Manual i3
- T :
& Robert F. Robinson
Joseph W. Stahl '
NN M. L. Roberson R
. ~ Applications Research Corporation [
. D. W. Roberson ;
ﬁ Applications Research Corporation
M- - .
N r %
: 1 M al
T October 1985 | o :
; » i
- E -

LA
<~

)

o DA "

AN .
- S .
X INSTITUTE FOR DEFENSE ANALYSES ;.
t 0
v Contract MDA 903 84 C 0031
. Task T-5-309 Y
. . -
o :
¥ &
N
g
(]
L]
SR N AR '.'q:.r AL P AL AN .-_:.-':..-_;.-,.'.-;.‘ AR PO AT e ‘ Ny ‘. SRy ‘_:-r.' oo '-: N .:-c;-,;.;.- '»\';-

PREFACE

This effort was undertaken in March 1985 as a part of a continuing program to
develop the C3EVAL model as an analytic tool for use by the Office of the Joint Chiefs of
Staff/Command Control and Communications Systems (OJCS/C3S) under Contract No.
MDA 903-84C-0031, Task Order No. T-5-309. The basic model has been developed by
IDA with programming support from Applications Research Corporation (ARC). This
work is reported in IDA Paper P-1756, "Development of C3 Assessment Methodology:
The C3EVAL Model," dtd February 1984. This is a report on work in progress and
provides a description of the work done in FY198S, an update of the users' manual, and a
briefing on the model and its current capabilities.

R EE R

joo > - e ry

3 ¢ @ o

-rCL

198", ¥y AN 4"e g YIRS WY 32 8o £70 g4, Beg bin - T EWTYY Y T Y Yy X I X AN Y P RO N ROR PO R ™ NN 2%

g

(a
e

-
)

Tk m v

CONTENTS

A. INTRODUCTION

g B. PROGRAM STRUCTURES
- 1. Program Preproc .

o a. Exit)
- b. Subroutine Instruc oA
N c. Subroutine Pream k.

N d. Subroutine SimCtrl 2

e. Subroutine NodeDic ?

:; (1) Subroutine Brouse X

- (2) Subroutine DelDic
. (3) Subroutine FindDic
(4) Subroutine GetNew
Subroutine Node

(1) Subroutine DelNode

.
Iy v v v T . -
"

"-.
>

\ :; (2) Subroutine FindNode f
: ° (3) Subroutine GetName 3
| - (4) Subroutine GetNew h
(5) Subroutine ScrBk -

(6) Subroutine ScrFwd ;

g. Subroutine Limits E
h. Subroutine CommNet -

? i. Subroutine ExtMsg }

j. Subroutine CbData ;

Cn k. Subroutine AoData .
= 1. Subroutine HcData X
$ = m. Subroutine Rules)
o n. Utilities .
' - (1) Subroutine DMinit ’
W [

2 A

5 (2) Subroutine Find }
' (3) Subroutine GetTyp
i (4) Subroutine GetWrd
, (5) Subroutine Gimme
3 Eg (6) Subroutine POut
(7) Subroutine Releas
g (8) Subroutine Restore

4 (9) Subroutine Save

' %\ (10) Subroutine ScrlLine

‘I (11) Subroutine SetFlag 4
. O (12) Subroutine SnapQ ;
v - (13) Subroutine UnSnap }
§ . (14) Subroutine Vvalidi ‘
. Eﬁ o. Data Structures)
4 _ p. Program Notes ;
- qg. Internal Code Documentation

o A

2. Program C3EVAL
a. Control Module
(1) Subroutine Contrl]
o (2) Subroutine DMinit K
: b. Input Module
} (1) Subroutine Input
(2) Subroutine Inputa
(3) Subroutine Inputc ;

-
Fare

A A G, 5
RN ey

"R

N :i (4) Subroutine RdRule L
(5) Subroutine Ruleln

- " (6) Subroutine StatlIn J
‘5 " (7) Time T Input Sub-module]
; S‘ (a) Subroutine ExtMsg ‘
5 -~ (b) Subroutine ExtSpt .
e (c) Subroutine TInPut

o (d) Subroutine ChForc

%; (e) Subroutine ChLim
x: vi !

!! ,
N ,
R R A A B A SR s,

e (£) Subroutine ChLink g
(g) Subroutine ChNode)
! (8) Block Data FRatio :
. c. Events Module ;
GE (1) Subroutine Events K
(2) €3 sub-module J
’ ﬁ' (a) Subroutine Node \
) (b) Subroutine AloCAS
S (c) Subroutine AloCat ‘
£ (d) Subroutine AltOut o
. (e) Subroutine AtoAlo X
< (£) Subroutine AtoDel ;
_— (g) Subroutine AtoOut .
5 ii (h) Subroutine AtoRtn o
;. (i) Subroutine FQueue R
! Eﬁ (j) Subroutine HoldQl K
; 7 (k) Subroutine HoldQ2 :
ii (1) Subroutine IntlUp.
3 i (m) Subroutine Limit »
i (n) Subroutine MakMsg
” ' (o) Subroutine MDelay A
- (p) Subroutine MinLim
AR (g) Subroutine MouLim ;
- (r) Subroutine MovMsg X
% lif (s) Subroutine MsglIn .
- (t) Subroutine MsgOut b
. f; : (u) Subroutine PRatio .
. (v) Subroutine Proces ‘
S (w) Subroutine RanMsg :
& (x) Subroutine Send
Co (y) Subroutine StatUp
: o (3) Air Operations Sub-module
. (a) Subroutine AirOps :
' ig (b) Subroutine MakMsg S
o o
. o
S 1 :

)

i J
P &]

> 2B

w
4

-

(4)

(c) Subroutine Status
Combat Sub-module

(a) Subroutine CASLos
(b) Subroutine Combat
(c) Subroutine MakMsg
(d) Subroutine Map
(e) Subroutine RptLos

d. Output Module

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Subroutine OutPut
Subroutine PMsgl
Subroutine PMsg2
Subroutine RulOut
Subroutine RulPrt
Subroutine Statou
Graphics Data
Subroutine VMData

e. Utilities

(1)
(2)
(3)
(4)
(5)
(6)
(7)
f. Data
(1)
(2)

Subroutine Find
Subroutine Gimme
Subroutine POut
Subroutine Releas
Subroutine Restor
Subroutine Save
Subroutine Snap
Structures

Common Data Structures
Dynamic Data Structures

g. Program Notes

h. Internal Code Documentation

Post Processor

(a) Program GraphSum
(1)
(2)

Subroutine GetSys
Subroutine GetVector

F‘.YA_' A N L T T R W R Ty Xy L N L N T Y O T Y W T Ty W W Wy ¥ I U T W e T W W are

T R

RGN

=

S

{_l‘

~
r

..I"

b

Ay

TR

« v e
DA I

e

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

47, ¥y *

Graphl
Graph2
Graph3
Graph4
GraphS
Options

Data Structures

Program Notes

Internal Code Documentation

(b) Program GraphT

(1)
(2)
(3)
(4)
(5)
(6)
(7
(8)
(9)
(10)
(11)

Attachment 1:
Attachment 2:

Attachment 3:

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

GetSys
GetUnit
Graphl
Graph2
Graph3
Graph4
Graph$S
Options

Data Structures
Program Notes

Internal Code Documentation

1x

PreProc Code Listing
C3EVAL Code Listing

PostProc Code Listing

..
........
.........

.............
..........................

r:‘
X
LN

.
-
N
.

Ty e

. . - »,
Fl s ." ':"; ..v‘ s ;’, s

- U

-
8 2:
‘u
'r.:' ¥
E) a
Ay by
g FIGURES "
o "y
N 1. C3EVAL Program Functions &f
tl 2. Main Menu 3
p 3. Instruction Screen —
“ 4. Data Dictionary Screen ﬁ
i 5. C3Network o
1 6. C3EVAL Modules -
o 7. C3EVAL Subroutine Bierarchy -
- 8. Print and Debug Parameters
- 9. Scenario Input Subroutines .
_ 10. Time T Input Subroutines ?;
" 11. Structure of Event Processes -
_ 12, Message Allocation Sequence f
o 13. Parameters in Communications Allocation]
) 14. Aircraft Availability Structure =
L 15. Print Out by Routine Output L
- 16. Node Dynamic Linking =
.. 17. CRC Dynamic Linking §
- 18. Generic Red Unit Tables of Equipment Dynamic §
Linking
) -
% 3
. %
.ﬁ 3
"
> X R
- -
- ii
R
-

=

;A
»

AZ

P

I .
O]

.,
1

r
-“7‘1

RS

. "l."\. :

oF |

1 -\ i‘.,\lhl n\.

L???g

o
2N

)

ey

C3EVAL PROGRAMMERS' MANUAL »

A. INTRODUCTION - £
- l,jf-/l’ ',' " . -
‘Thls manual is to be used in conjuction with an Analysts LU -
Manual for the C3EVAL model. This manual describes the C3EVAL h
command, control and communications model and its preprocessor g

and post processor. The preprocessor consists of 37 subroutines
of approximately 2,378 lines of code. The post processor con-

sists of 18 subroutines of approximately 936 lines of code. The EG
C3EVAL (85) model has 70 subroutines and approximately 6,314 -
lines of code. The source code for the model is written in ;i
FORTRAN for a YAX 11/785. Each of the program structures N
(preproc, Cc3EVAL, postproc) are presented in separate sections. 2

There is some duplication of subroutine names in preproc and

CIEVAL. In those cases where the subroutine code is actually
used by both programs, it is noted in the preproc description.
In each section the data structures, notes on the program and

extracts of the comments that are in the code as internal

y

”
P

documentation. Computer listings of the codes are in the

attachments.

The preprocessor utilizes the DEC Forms Management System

‘-. ‘-' ‘.‘ ¢,

(FMS) to communicate with the users. The post processor is based
on DECGRAPH for continuous and bar graph output. The C3EVAL
requires the normal FORTRAN library routines including user

"
e

W . o)

options to use the random number generator./"(v

- j\x&i | o

B. Program Structure e

The source code and development data files are contained in
the DRA: [C3EVAL.UNCLAS] directory on the IDA VAX 11/785
computer under user identification code CAG - 060107. Some model

............
...........................
................

Cudid bl el Al Sk ek Sl) tak el Aalk dekl ~glh il s

e facilities are under continuing development. Those functions
that are in this status (i.e., preproc Limits, CommNet,..and

!! helicopter allocation in C3EVAL) are identified in the applicable

sections. Figure 1 shows the functional and file relationships

between programs. The C3EVAL input files can be modified by use

of a general purpose editor and contain data preambles and
!: comment areas to assist a user in this mode. The preproc work
file is binary and is not useful to a general purpose editor.
All files shown may be saved for future reference and comparison
of results.

B.l. Program Preproc

. The preprocessor was written in order to facilitate the
é‘ creation and modification of the data base required to run
C3EVAL. The program is a mixture of FORTRAN subroutines and FMS
commands for communication with the user. The data base for
C3EVAL is 9 data sets contained in 4 input files. The elements
‘i of data set are inter-referencing during validation. The
preprocessor also allows the user to use names to identify data
. base. The preprocessor is menu driven with scrolling in fields
where it is required. This simplifies what the user needs to
= know in order to create the data base because the user does not
need to know all the in's and out's of an editor. Whenever an
invalid input is received an error message is flashed at the
bottom of the screen. Figure 2 presents the main menu for the
preprocessor as shown on the terminal. When the user indicates
the EXIT function output file dispositions are queried by the
prepro-cessor.

B.la. Exit

This option allows the user to leave the main menu and
return to the main program. The main program can then save the

w'n A ! F ‘ ,,1 EV. st — . ‘ “' “ﬁv‘ .l ol bla -' .-Q . .1‘ * . I‘- l’..- -’ .l- b--uﬁ‘n- -- M-..-.c ‘»Q-‘ -. -‘- ! -l\-..\ .l- ..\ .\\ -\- P l‘.‘ ‘l ‘I\.‘I*’.‘D . -. .\.h\hl"A - _‘ §'¢ ﬁ - 1‘. -l. ~" —.-~|-. !‘-’-'. \h- ..lc“c-:\-

oo W)

[/

paysseoun
NL1-G8-21-01

suonoun weioid reage D 'l am3ig

NNSHJVHD LHdVHD
374 :
3714
AHVWRNNS v 1 3NiL p
mmn__n_‘/ VA3 ﬂO

1HOd3H ¢

s34 .

LNdNI
VA3 ¢

ERIE

NHOM <+—| J0HdIUd |¢——>» SHd |¢—

=

l“‘

N

>
3

LI

P ‘ . e . , s, v . JORE PN “ e e -] W e o, v, - AR 18 *
e R S K L e s i oo W o b vy Ve ey e B

3
& 1. EXIT 1. CREATE by
2. INSTRUCTIONS 2. EDIT Y
“ 3. PREAMBLE DOCUMENTATION /
4. SIMULATION CONTROL SELECT MODE (1-2): 1 &
5. NODE DICTIONARY o
o 6. NODE o
oy 7. LIMITS 2
- 8. COMMUNICATIONS NETWORKS o
9. EXTERNAL MESSAGES
" 10. COMBAT DATA .
L g 11. AIRCRAFT DATA :
12. HELICOPTER DATA R\
e 13. RULES i
R o

SELECT OPTION NUMBER (1-12): 6

Figure 2. <Y

) contents of virtual memory or create the data file if the user

- . .
indicates that he wants either file.
o B.1lb. Subroutine Instruc ﬁ{
)
ii Subroutine Instruc puts the instruction form on the screen s
and waits for the user to hit the < RETURN > key. The instruc-
o tion form contains information on how to move the cursor around
N the screen and other special function eys. The special functions .
' include: browsing up or down a queue, searching for an entry in -
e a queue and deleting entries from a queue. Figure 3 shows the "
. %Y
_ instruction screen. N
R =
' B.lc. Subroutine Pream 4
e« . . h
~ This subroutine allows the user to make preamble documenta- ..
tion for the beginning of the data file. Each line of documenta- 3
QE tion is 60 characters long. Lines can be changed or added to the %
~, .
bottom but not deleted or inserted.
v \
o g

W o
¥

- ~
E; N

INSTRUCTION SCREEN

MOVING FROM ONE FIELD TO ANOTHER:
NEXT FIELD < TAB >
PREVIOUS FIELD < BACKSPACE >

SCROLLING IN A SCROLLED AREA:
SCROLL NEXT = DOWN_ARROW
SCROLL PREVIOUS = UP_ARROW
EXIT SCROLLED AREA NEXT
EXIT SCROLLED AREA PREVIOUS

< PFl >
< PFI >

SEARCHING FOR ENTRY = KEYPAD 4
NOTE: WHEN RESPONDING TO PROMPT HIT < ENTER > NOT < RETURN >

DELETING ENTRY = KEYPAD 4
NOTE: WHEN RESPONDING TO PROMPT HIT < ENTER > NOT < RETURN >

LOOKING AT ENTRIES

NEXT SCREEN = KEYPAD 2
PREVIOUS SCREEN = KEYPAD 8
HIT < RETURN > TO MAIN MENU
Figure 3.

B.1ld. Subroutine SimCtrl

Subroutine SimCtrl allows the user to set the values of
c3EVAL print control flags, optional output modifier times, debug
output flag and debug output start and stop times. For all flags
a value of zero represents OFF and a value of 1 represents ON.

No other values are accepted as input for flags. All output
times must be between 0 and 9999.

B.le. Subroutine NodeDic

Subroutine NodeDic allows the user to create and edit
entries within the node dictionary. Create mode allows the user
to create new types and names to correspond to them. Edit mode
allows the user to change types, i.e., change all entries of type
'100' tc type '200'. The user can also change or add names.

Both modes allow the user to delete all entries of the current

.
X

o

e £ 4

Ry o LT

LY

K4
A R

~
-~ =

» -'I
.

T N
P

v
l", '

hoed
X g
e

4

o>

~, &
¥ 8
- type. Only edit mode allows the user to search for a particular ;f
N type. Figure 4 is an example showing that type '300' is a £
division and it has acceptable abbreviations of 'div' or 'DIV'. ;T
3
:-' .‘
TYPE NAME !
[300 div
o DIVISION e
? DIV s
‘
L .
e S
* = \,
- rd
. o
MODE: EDIT n
‘ HIT < RETURN > TO RETURN TO MAIN MENU g
= Figure 4: DATA DICTIONARY SCREEN
ii B.l.e(l) Subroutine Browse ﬁ;
Used for sequentially searching through the node dictionary 2y
7 while in edit mode. The current contents of the screen is all Ny
‘--' ~
. dictionary entries corresponding to the current type number. If e
[the user hits the browse up key then the subroutine gets the 3
R locations of all entries corresponding to the previous type. If ﬁ;
.. no previous type exists then sends 'Top of Queue' message to user E
;: and keeps the pointers to the current dictionary entries. If the ES
L,
user hits the browse down key then the subroutine gets the loca-
-« -
- tions of all entries corresponding to the next type. If no next R
) -type exists then sends 'Bottom of Queue' message to user and b
e keeps the pointers to the current dictionary entries. §
o Ry
- B.l.e(2) Subroutine DelDic 0
.l. D\ .
o r"-
Used for deleting all entries in the node dictionary cor- o
E; responding to the current type, i.e., all entries that are on }'
] .‘-‘
X
o -
-':' 6 :: .
o
w»

. P U
P e T e tem et e, DY
..................

" .(e L e *e % e .. "
ol

e

” r . e - n z b
& P!
E: y
i the screen when the user hits the appropriate key. There are two !
1 pointers, TOP and BOTTOM, which point to the first and last =

> entries of the current type. Starts at location TOP and walks f
e through the queue using the pointers which are sorted by type. :
;? Each entry encountered is removed from both dictionary queues and 3
its virtual memory space is released for future use. Stops when .

' it encounters location BOTTOM. ’
..
ﬁ; B.1l.e(3). Subroutine PindDic }
This subroutine is called when the user hits the find key _

Eﬁ while editing the node dictionary. The type to search for is "
- input by the user. Then subroutine Find is called to get the i
;i pointer to the first occurrence of the input type within the node ;
- dictionary. The pointer returned by Find is stored in TOP. _'
. Since all entries of the same type are grouped together the %
N dictionary is walked through starting at location TOP until the E
- last entry of the input type is found. The pointer to the last ;
‘i entry is stored in BOTTOM. If the type to search for is not)
_ found in the node dictionary (find returns a zero) then get first x
&1 type that is in node dictionary (set TOP to zero). %
e

!! B.l.e(4). Subroutine GetNew .
- Subroutine GetNew gets from the user an entry that is not an &
E; already existing entry. The field to input from and the queue to :
search are both parameters. The offset from the beginning of a »

;7 queue element to compare on is also a parameter. If the user .
input entry is found in the specified queue then an error message t

" is sent and the user must input again. If the user input entry -~
2; is not found in the specified queue then the input is passed back :
to the calling routine. "

3

i

n B

R
L

158

.

M

7
WS

PP
al

B.1l.f. Subroutine Node

Subroutine Node allows the user to create and edit the node
data set. 1In create mode the user creates new nodes and gives
information about the node. This information includes the main
node's commander, the main node's subordinates and any other
nodes that the main node can communicate with. There can also be
two alternate communication nodes for each node that the main
node can communicate with. 1In edit mode the user is allowed to
change information about existing nodes. Both modes allow the
user to delete the current node from the node queue. Only edit
mode allows the user to search for a specific node or to browse
up or down the node queue.

B.1.£(1). Subroutine DelNode

Subroutine DelNode deletes a node from the node queue. When
a node is deleted its name is set to "DELETED" and it is resorted
into the node queue. The node is not removed entirely from the
node queue because all other nodes that have the deleted node
listed as a commander, subordinate, etc. would either find the
wrong node or garbage when it accessed the pointer to the deleted
node. When the node is deleted the pointers to the commander and
its alternates are set to zero. All entries in the subordinate
and other network node queues are removed from the queues and
their virtual memory space returned for future use.

B.1.f£(2). Subroutine FindNode

This subroutine is called when the user hits the find key
while editing a node. Tie user inputs the name of the node to
search for. Then subroutine Find is used to get the pointer to
the entry in the node queue that has the input name. If the node
name is found in the node queue then the current position is set

to the pointer to the entry. If the node name is not found (find

AT

-9

&
& :
returns a zero) then the current position is set to zero and a N
' message is sent to the user. N
S ¥
% o B.1.£f(3). Subroutine GetName)
S, N
o Subroutine GetName is used to get a valid node name from the d
A user. If the input name is an already existing node then the -
B pointer to that node is returned. Otherwise, if the name con- N
tains an entry in the node dictionary then a new node is created
;j with its name being the input name. This new node is sorted into
. the node queue and the pointer to its location is the value re-)
-: turned by GetName. If the input name is neither an already
existing node nor a node name that contains an entry in the node
G: dictionary then the input name is illegal. The subroutine sends
- an error message to the user and gets another node name from the -
user. o
. B.1l.f(4). Subroutine GetNew
" (See B.l.e. (4))
_." o
?t B.1.£(5). Subroutine GetScr E
- Subroutine GetScr gets from the user a sequence of valid
node names from a scrolled area. A valid node name is either a :
B node that is already in the queue or a node name that contains a E
t: word that is in the node dictionary. For each node name in the >
- sequence, if the node name already exists then save the pointer "
- to its location in virtual memory. Otherwise, if the node con-
" tains a word that is in the dictionary then create a new entry
’? for the queue and save its pointer. Otherwise, the node name is -
< illegal and the user must input another node name. The values a
e returned are the 3 pointers to the nodes input by the user. 2
-~ :;
2
{é 4
9 ;
_ .
E! .
‘;l:i':';i:f.‘.’ """" I O G R O R L '.;_:.-_:.'_::

a e e

e T Y

oy

ol

.
”

B.1.£(6). Subroutine ScrBk

Subroutine ScrBk is called whenever the user hits the
up_arrow key while in a scrolled area. If the current line of
the scrolled area is not the top line then the new current line
becomes the line above the current line. If the current line of
the scrolled area is the top line and there are undisplayed lines
above the current line then each line of the scrolled area is
moved down and the new line is displayed at the top of the
scrolled area.

B.1.£(7). Subroutine ScrFwd

Subroutine ScrFwd is called whenever the user hits the
down_arrow key while in a scrolled area. If the current line of
the scrolled area is not the bottom line then the new current
line becomes the line below the current line. If the current
line of the scrolled area is the bottom line and there are
undisplayed lines below the current line then each line of the
scrolled area is moved up and the new line is displayed at the
bottom of the scrolled area.

B.l.g. Subroutine Limits

Subroutine Limits is not implemented yet.

B.l.h. Subroutine CommNet

Subroutine CommNet is not implemented yet.

B.l.i. Subroutine ExtMsg

Subroutine ExtMsg is not implemented yet.

B.1.j. Subroutine CbData

Subroutine CbData is not implemented yet.

10

L S e A T T Y AP A S P
SN N et

TS N TR TR TL LV
AL ORISRy

PR g

eV o)

" T E Tl

WPT3 (RNRR

B.l.k. Subroutine AcData

Subroutine AcData is not implemented yet.

= Al
..

B.1l.1. Subroutine HcData
¥
Subroutine hcData is not implemented yet. o
"
™ B.l.m. Subroutine Rules 4
> Subroutine Rules is not implemented yet. 3
.2 B.l.n. UOtilities a
A -
. B.1l.n(l). Subroutine DMInit /
» % "
o Same as subroutine DMInit in program C3EVAL. See section
; B.2.a(2) X
- ‘ ;
B.l.n(2). Subroutine Find Y
. Same as subroutine Find in program C3EVAL. See section .
B.2.e(l) .
B.1.n(3). Subroutine GetTyp g
. A
" Subroutine GetTyp searches a node name for any word that -
-
.. occurs in the node dictionary. If an occurrence of a word in 7
:é node name is found then returns the type corresponding to the -]
dictionary entry. Otherwise, returns a string of blanks.)
- .
B.1l.n.(4). Subroutine GetWord
,e (&
- Subroutine GetWord finds the first word that is contained in §

a string. If the string passed in is blank then GetWord returns

blanks for the string and the word. Otherwise, the first word
within the string is found and saved in IWORD. Then the word is

' :\
[N M
- removed from the string and GetWord returns the resulting string f
(%
ﬁ and IWORD. N
o
. B.1.n(5). Subroutine Gimme g»
e +
- Same as subroutine Gimme in program C3EVAL. See section g:
. B.2.e(2). ’
C' -
B.1.n(6). Subroutine IntChr 2
' w
15 Subroutine IntChr converts an integer to its ASCII ty
N representation. The parameter ISize is the number of digits to —
B convert. Note that the maximum length of the string is 12 Q;
characters by declaration. E’
% L
B.1.n(7). Subroutine POut A
:; Same as subroutine POut in program Cc3EVAL. See section ij
- >
BOZ.e(3). ::-'
- r 4
ii '
B.1l.n(8). Subroutine Release X
= Same as subroutine Release in program C3EVAL. See section >
.. e
B.2.e(4). gé
= B.1.n(9). Subroutine Restore N
I
- Same as subroutine Restore in program C3EVAL. See section -
Py o‘_-
:-:' B.z.e(S). . :;'.
¥ : .
bl B.1.n(10). Subroutine Save -
- Same as subroutine Save in program C3EVAL. See section j%
2 B.2.e(6).]
e 2
o]
7
19
' vy \$

4 &7

-

S
% - 12

»
. v o -
» 0 S . ":'- *

- ". pJ ",. ", »~ . L . . o . -
e e e A

-
2 .*.
. . .

. :
L} '. ‘l
SN B.l.n(1l1). Subroutine ScrLine ‘
[} i
'! Subroutine ScrlLine is used to create a string to output to a -
scrolled line. The scrolled line contains 6 fields consisting 4

L of: main node name, main node id, lst alternate's name, lst
alternate's id, 2nd alternate's name and 2nd alternate's id. |
Each name is a string of 12 characters and each id is a string of
g; 4 characters. Each name and id is found by using the appropriate

pointer to get the node's location in memory and then picking up

R X P

- the name and id from the appropriate offsets. When the resulting
string is passed to FMS it will be parsed and each value will be
-~ sent to the corresponding field.

o B.1.n(12). Subroutine SetFlag

w Subroutine SetFlag creates the data structure that contains
: - the print control flags, optional print modifiers, debug print ;
= flag and debug print start and stop times. All values are 2
. initialized to zero. Since all flags are only 1 character but K
i are stored in 4 character fields the lst character of the field ~
is initialized to zero. However, since the optional print 8
_i modifiers and debug print start and stop times are 4 character E
modifiers and debug print start and stop times are 4 character N

! fields that are right justified the zero is in the last location.
- B.1.n(13). Subroutine SnapQ .

l"
f

Subroutine SnapQ inserts an entire queue of records into
o another queue of records. Assumes that all records in the queue
: S being added have the same value being sorted on, therefore, they
can be inserted as one large record. Note: A queue of one

AR A o)

record can be inserted by passing the same pointer for both the
i) top and bottom of the queue to be added. Assumes that there is a X
corresponding back pointer for the forward pointer. Assumes back .

-
e

. pointer is offset from its forward pointer by 1. .

.

v
<

[)

B.1.n(14). Subroutine UnSnap

Subroutine UnSnap removes an entry from a queue. Assumes
that there is a corresponding back pointer for each forward
pointer. Assumes back pointer is offset from its forward pointer
by 1. Sets forward pointer of previous node to next node. Sets
back pointer of next node to previous node.

B.1.n(15). Punction Validl

Function Validl is a Field Completion User Action Routine.
Validl checks to see that the inputted value is between 1 and a
maximum value. The maximum value is dependent on the field that
is being read from. The maximum value is stored in Named Data
which is an FMS data structure.

14

Data Structures

B.l.o.

O

.--‘..
LN

] 11&

VAL

B SV ¥ &

15

R ARINA

%

BLOCK NAME: MROOT

USE: Contains all root pointers for virtual 3
memory v
CREATEDBY: PREPROC
DELETEDBY: not applicable)
ROOT: COMMON/LOCATE/MROOT DATE: :
INDEX ELEMENT TYPE ELEMENT N
NAME MEANING/USE -
PDICNI NODE dictionary (sorted by TYPE)
PDICN2 NODE dictionary (sorted by NAME)
PNODE NODE queue
PREAMB Preamble documentation
Print control flags
§
"
o
¢
o
v 16 X
g N
| a
L
¢
N
\

...............

ey Lt e .ot
L N N SIS I I et
LV NIRRT T P R O

E ;
¥ .
l BLOCK NAME: PDICN BLOCK SIZE: 6

USE: Dictionary of all valid node types. Each type
™ number has one or more unit names that A
ra correspond to that type. "4
| CREATEDBY: NODEDIC <
o DELETEDBY: DELDIC B
" ROOT: MROOT+0 DATE: N
ELEMENT | TYPE ELEMENT N
NAME MEANING/USE
Next dictionary entry (by TYPE) ‘
Previous dictionary entry (by TYPE) N
- v
~ Next dictionary entry (by NAME)
i Previous dictionary entry (by NAME)
Dictionary entry 4'
:
- Unit type of dictionary entry 4
B

C o
£
G 17
n:‘: o«
E X

Ml KNt A - TN T TR TN T R YR

BLOCK NAME: PNODE BLOCK SIZE: 10

USE:

Queue containing all nodes for the scenario.
Each entry in the queue also has all
communication paths that pertain to the node.

CREATED BY: GETNAME, GETSCR, NODE
DELETED BY: DELNODE

ROOT:

MROOT+2 DATE:

INDEX

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PNIDEF Next NODE
PNODEB Previous NODE

NAME NODE name
UNIT NODE number

TYPE NODE type
PCMDR NODE's commander

1st alternate for commander

2nd alternate for commander
NODE's subordinate queue

NODE's network queue

18

CARRIICAT) |92

{

LY

A

rr ¢ 1

SRR | |AAAY

&k]

€
VR

s

vy

BLOCK NAME: PSUBQ

USE:

Queue of all subordinate communications
paths for a specified node. Each entry in the
queue can aiso have the two alternate
communications paths for the subordinate.

NODE
DELNODE

PNODE+8 DATE:

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PSUBQF Next subordinate

PSUBQB Previous subordinate

PSUB NODE's subordinate
PSUB1 1st alternate for subordinate
PSUB2 2nd alternate for subordinate

AR

g
..

’_-.._ n

)

-
1

BLOCK NAME: PCOMQ

USE:

Queue of all other communications paths for
a specified node. Each entry in the queue can
also have the two alternate communications
paths.

NODE
DELNODE

PNODE+9 DATE:

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PCOMQF Next network NODE

PCOMQB Previous network NODE
PCOM Network NODE

PCOM1 1st alternate for network NODE
PCOM2 2nd alternate for network NODE

PR N

> b b 2on w20 2ot DAY

WY e _yuv.e

BLOCK NAME: PREAMB

USE: Linked list of preamble documentation
lines. Each line is 60 characters long.

CREATED BY: PREAM

DELETED BY: not applicable

ROOT: MROOT+3 DATE:
INDEX ELEMENT TYPE ELEMENT
NAME MEANING/USE

PREAMBF Pointer to next line

PREAMEBB Pointer to previous line
LINE Line of documentation

RS
L) .\:
od :
, :
_s BLOCK NAME: PFLAG BLOCK SIZE: 26
USE: List of all print control flags, optional output
e modifier times, debug output flag and debug
Y output start and stop times. NOTE (for all 4
flags): 0 -- > OFF, 1 -- > ON. ;
5 SETFLAG
o not applicable :
MROOT+4 DATE: .
ELEMENT TYPE ELEMENT Y
NAME MEANING/USE
N 1 FLAG1 All messages at alternate dest. 5
M 2 FLAG2 All messages on input queues :
N 3 FLAG3 All messages on output queues
4 FLAG4 All messages on future queues :
] ™ 5 FLAGS All messages being held 2
6 FLAG6 All messages being deleted -
. 7 FLAG? Status of rule structure
- 8 FLAGS8 CAS take off scheduled
N 9 FLAG9Y not assigned
_i FLAG10 not assigned -
FLAG11 Tracked messages at alternate dest.
FLAG12 Tracked messages on input queues :
FLAGI13 Tracked messages on out queues
FLAGI14 Time T output on file 14 required
) FLAGIS Combat loss vector
< FLAG16 Force ratio calculations
N FLAG17 Rule status at final time :
MR FLLAG18 not assigned by
N FLAGI19 Random processing required b
- FLAG20 Used internally for sum of flags
- MOD1 Optional output restricted to this node
MOD2 Optional output starts at this time
X MOD3 Optional output stops at this time :
S DEBUG! Debug output flag :
s 2 DEBUG2 Debug output start time ;
2 DEBUG3 Debug output stop time
i :
q: K
.. 3
by Ei K
) ! 22

R ,,'._-,_. . e Lt et o P
RO A SR B R SRAANK G NS

Y

[4 =)

noN .
.~ B.l1.p. Program Notes h
' ' Most of the interfacing with the screen is accomplished by]
. - using FMS provided routines and structures. One tool provided by 3
¢ FMS is a Field Completion User Action Routine. A field com- :
, ﬁg pletion UAR is a function that is called by FMS when the user k
. completes his entry for a field. The function can then process -
4 ? the value that the user input to determine if it is a legal .
' entry. The function returns a value which tells FMS to either)
'."’3 accept the user input or to get another value from the user. ;
Named Data is another tool provided by FMS. These are data
o values that have names so that they can be accessed by an FMS g
. - command. This way values can be associated with particular :
. - fields but not hard-wired into the actual code. More detailed :
: > information on UAR's, Named Data, or any of the FMS provided ‘
M routines can be obtained from VAX manuals on FMS. :
3 3
I b |
: ;
:_ €
% p
"
N
c ‘
~ '
N E? 3

F A

'y

-
LY
N
w

"d

"
e
“
A

Yy } .rt v, W - .c - .JWL!..”.. r.iﬂ ' 2 .-.....». d -A. o 805 IR, .-. DA S W PR e MR 25 l!lM(v)
¢l
J. .
Y, =
o]
o
Fe]
o
&
]
m
.“ c
._ 8
: m
, Q
- [l
o
i =]
4
o
&
=
, -
.
o
.
-
o .
m
4
1 - - . P . Y « o o - " - . .o Cm g -
AR RS AR AU EEN NN BRI BEEAAAEE TRV X
q

."b "i }“

PROGRAM PREPROC

PURPOSE: CREATE DATA FILE TO BE USED AS INPUT FOR
PROGRAM C3EVAL : q

-

- INITIALIZE FMS
~ IF WORKFILE EXISTS LOAD DYNAMIC MEMORY ELSE INITIALIZE X
DYNAMIC MEMORY '
PROCESS ALL MENU REQUESTS
SAVE CONTENTS OF MEMORY AND COMMON'S
< CREATE OUTPUT FILE
. CLEAN UP

oy SUBROUTINE ACDATA

T SUBROUTINE IS NOT IMPLEMENTED YET

1 SUBROUTINE BROWSE(NWORD, FLAG)

5 a1

g
v JP
LAY

:{ PURPOSE: USED WHEN EDITING NODE DICTIONARY. MOVES UP OR DOWN ONE
- SCREEN, I.E. GETS ENTRIES CORRESPONDING TO PREVIOUS OR NEXT TY

AR PARAMETERS :
» NWORD ==> OFFSET TO COMPARE ON

FLAG ==> DIRECTIONAL FLAG N

. 0 -> SEARCH DOWN ‘

W 1 -> SEARCH UP b

. IF NO NEXT ENTRY THEN SEND APPROPRIATE PROMPT !
Iy SET TOP TO NEXT ENTRY

o FIND ALL ENTRIES OF SAME TYPE AS TOP

! SET BOTTOM TO LAST ENTRY OF SAME TYPE AS TOP

>
gy "y 8 W

- IF SEARCHING UP THEN SWITCH TOP AND BOTTOM POINTERS AND
SUBTRACT ONE TO GET FORWARD POINTERS INSTEAD OF PREVIOUS
N POINTERS.

SUBROUTINE CBDATA
¢ SUBROUTINE IS NOT IMPLEMENTED YET
SUBROUTINE COMMNET
SUBROUTINE IS NOT IMPLEMENTED YET
SUBROUTINE DELDIC

ANl N
[w]

o PURPOSE: DELETE ALL ENTRIES IN NODE DICTIONARY CORRESPONDING TO
CURRENT TYPE, I.E. ALL ENTRIES ON SCREEN.

TOP AND BOTTOM ARE POINTERS TQ THE FIRST AND LAST ENTRIES
OF THE CURRENT TYPE.
e DO FOR ALL ENTRIES BETWEEN TOP AND BOTTOM
N UNSNAP CURRENT ENTRY FROM DICTIONARY QUEUE BY TYPE
M UNSNAP CURRENT ENTRY FROM DICTIONARY QUEUE BY NAME
) RETURN VIRTUAL MEMORY SPACE FOR FURTHER USE
M) SUBROUTINE DELNODE(PNODE)

L';n{,: N

PURPOSE: DELETE A NODE FROM THE NODE QUEUE

& PARAMETERS :
‘ PNODE ==> POINTER TO NODE TO DELETE

[SET NODE TYPE TO BLANKS
O REMOVE POINTERS TO COMMANDER AND IT'S ALTERNATES
. REMOVE ALL BNTRIES FROM NODE S SUBORDINATE QUEUE AND RELEASE

. . - -t e R R e T . D N
AR A R . et . R PR . R
.l D . L IS0 " . . t »,

T YTy

| R

AP
PR

" Laad .I~-":

kl

23

MEMORY £ 'ACE FOR FUTURE USE.

REMOVE ALL ENTRIES FROM NODE'S NETWORK QUEUE AND RELEASE
MEMORY SPACE FOR FUTURE USE.

REMOVE MAIN NODE FROM QUEUE; MARK MAIN NODE AS DELETED;
RESORT MAIN NODE INTO QUEUE

SUBROUTINE DMINIT(MEMORY,MPTR, IGBPTR,6 MAXDNM)

I EE R EEEREEREEEEREEEREEEERERERE R R RERERNEERE R,

* INITIALIZE DYNAMIC MEMORY
I EE R EE SRR ENEREREEE R R R E R R R RERRE R
INITIALIZE MEMORY POINTER

INITIALIZE GARBAGE POINTER

CLEAR DYNAMIC MEMORY

SUBROUTINE EXTMSG

SUBROUTINE IS NOT IMPLEMENTED YET
SUBROUTINE FILEOUT

PURPOSE: CREATE OUTPUT FILE FOR FURTHER USE BY PROGRAM C3EVAL

OPEN OUTPUT FILE

OUTPUT PREAMBLE DOCUMENTATION

DO FOR ALL ENTRIES IN QUEUE

OUTPUT CURRENT LINE

OUTPUT LINE THAT SIGNALS END OF PREAMBLE DOCUMENTATION
OUTPUT HEADER LINE FOR PRINT FLAGS

OUTPUT PRINT CONTROL FLAGS, OPTIONAL OUTPUT TIMES, AND DEBUG
OUTPUT FLAG

OUTPUT DEBUG START AND STOP TIMES

WRITE INPUT MODE AND HEADER LINE

DO FOR ALL ENTRIES IN NODE QUEUE

GET NODE'S UNIT NUMBER AND TYPE

GET UNIT NUMBER OF COMMANDER

GET UNIT NUMBER OF 1ST ALTERNATE FOR COMMANDER

GET UNIT NUMBER OF 2ND ALTERNATE FOR COMMANDER

SET COMMANDER AND SUBORDINATE FLAGS, APPROPRIATELY

OUTPUT NODES COMMANDER AND ITS ALTERNATES

SET COMMANDER AND SUBORDINATE FLAGS, APPROPRIATELY

DO FOR ALL ENTRIES IN SUBORDINATE QUEUE

GET UNIT NUMBER OF SUBORDINATE

GET UNIT NUMBER OF 1ST ALTERNATE FOR SUBORDINATE

GET UNIT NUMBER OF 2ND ALTERNATE FOR SUBORDINATE

OUTPUT NODES SUBORDINATE AND IT'S ALTERNATES

SET COMMANDER AND SUBORDINATE FLAGS, APPROPRIATELY

DO FOR ALL ENTRIES IN NETWORK QUEUE

GET UNIT NUMBER OF NETWORK NODE

GET UNIT NUMBER OF 1ST ALTERNATE FOR NETWORK NODE

GET UNIT NUMBER OF 2ND ALTERNATE FOR NETWORK NODE

OUTPUT NODES NETWORK NODE AND IT'S ALTERNATES

CLOSE OUTPUT FILE

SUBROUTINE FIND(PIN, N, ID, POUT)

IR R R R R ERERERERERE R R R R R R R ERRE R R R R R R R R RS R Rl R R REE S

* FIND A POINTER IN A QUEUE

(I EEEEEE SRR EREEREEEEEE R R R R R RS R E R R R R E R R R R R R R R R RN

* INPUT

» PIN - POINTER TO TOP OF QUEUE TO BE SEARCHED
* N - OFFSET FROM PIN TO COMPARE

s ID - VALUE TO MATCH WITH N

I AR R R R R R EE SRR EE RN
* CREATES

* POUT - POINTER TO DESIRED ELEMENT

YRR RAD)

t

-y e

-.’..

Ry

L2 NSO R T e JUCai it Jaetat et S b e S il 8 AR S T A W i S e St i e Al gt A AASLEE I die A ke 2be ah et ad zae s S ENSE SR

18
.
2

I EEEERRERERE R EREER N

DO FOR ALL QUEUE ELEMENTS =

COMPARE VALUES :
GET NEXT ELEMENT ‘ n
END OF SEARCH N
SUBROUTINE FINDDIC A

AP
T s B
L

ARSI - £

PURPOSE: FIND ALL ENTRIES IN NODE DICTIONARY CORRESPONDING
TO INPUTTED TYPE.

R
i

GETS A STRING FROM THE USER CORRESPONDING TO THE TYPE NUMBER
TO SEARCH FOR

FINDS FIRST ENTRY OF INPUTTED TYPE AND STORES POINTER IN TOP
FIND ALL DICTIONARY ENTRIES OF SAME TYPE

) STORE POINTER TO LAST ENTRY OF INPUTTED TYPE IN BOTTOM

2 SUBROUTINE FINDNODE

M
AR

a2 SuN 2
o

PURPOSE: SEARCH NODE QUEUE FOR USER INPUTTED NODE.

o GET NODE NAME TO SEARCH FOR
> SEARCH FPOR NODE NAME

u S I

IF NODE NAME IS NOT IN NODE QUEU THEN ERROR ELSE SET CURRENT
POSITION POINTER TO NODE JUST FOUND

SUBROUTINE GETNAME(FLDNAM, FLDIDX, FLDTRM, PTEMP)

-
LSRRI

PURPOSE: GETS FROM THE USER A VALID NODE NAME.

PARAMETERS:
FLDNAM ==> NAME OF FIELD TO INPUT FROM
FLDIDX ==> INDEX OF FIELD
N FLDTRM ==> VALUE OF FIELD TERMINATOR KEY
PTEMP ==> POINTER TO NODE

A

.- GET NODE NAME FROM USER. IF NULL ENTRY THEN RETURN NILL POINTER. o
o NODE DOESN'T EXIST, THEREFORE, CREATE NEW NODE
¢ ILLEGAL NAME: TRY AGAIN
LEGAL NAME: SAVE NAME, NUMBER AND TYPE
"~ SNAP INTO QUEUE
o OUTPUT NODE'S UNIT NUMBER TO APPROPRIATE ID FIELD
SUBROUTINE GETNEVW(PROOT, LENGTH, FLDNAM, FLDIDX, FLDVAL, FLDTRM)

v als s
o L

1

PURPOSE: GET UNIQUE ENTRY FROM USER. X

‘v Ll
e
et

PARAMETERS :
PROOT ==~> ROOT OF QUEUE TO GET UNIQUE ENTRY FOR X
LENGTH =~> OFFSET FROM PROOT TO COMPARE :
FLDNAM ==> NAME OF FIELD TO INPUT FROM A

" FLDIDX =~> INDEX OF FIELD TO INPUT FROM *

V3 FLDVAL ==> VALUE INPUTTED FROM FIELD

FLDTRM =~> FMS VALUE OF TERMINATOR KEY

» 4.' -"_A'

> GET ENTRY FROM USER. 1IF FIELD INDEX IS O THEN DON'T PASS o
- TO FMS ROUTINE GET. o

SEARCH QUEUE FOR ENTRY "
-] SUBROUTINE GETSCR(FLDNAM,FVALUE, FLDTRM, PTEMP, PTEMP1, PTEMP2) B

e
O

e FROM A SCROLLED AREA.

u PARAMETERS: N
b FLDNAM ==> NAME OF FIELD TO INPUT FROM .
FVALUE ==> VALUES INPUTTED INTO FIELDS N
o FLDTRM ==> VALUE OF FIELD TERMINATOR KEY s
f: PTEMP ==> POINTER TO NODE /
PTEMP1 ==> POINTER TO 1ST ALTERNATE NODE e
PTEMP2 ==> POINTER TO 2ND ALTERNATE NODE =

v |

INITIALIZE POINTERS TO ZERO -

r IF ALL FIELDS ARE BLANK THEN RETURN NILL POINTER. -
e IF MAIN FIELD IS BLANK BUT ALTERNATE FIELD IS NON-BLANK e
THEN SEND ERROR MESSAGE AND GET INPUT AGAIN.

0

™
e
L

CART
e

PROCESS NODE NAME

7L

<. NODE DOESN'T EXIST, THEREFORE, CREATE NEW NODE
- ILLEGAL NAME: TRY AGAIN
LEGAL NAME: SAVE NAME, NUMBER AND TYPE
o SNAP INTO QUEUE
- SET UNIT NUMBER OF MAIN NODE

., IF THERE IS A 1ST ALTERNATE THEN PROCESS 1ST ALTERNATE.
" IF NO 1ST ALTERNATE AND NO 2ND ALTERNATE THEN BRANCH TO
OUTPUT SECTION. =

IF NO 1ST ALTERNATE BUT 2ND ALTERNATE THEN ERROR - GET :

INPUT AGAIN. o

w PROCESS 1ST ALTERNATE

NODE DOESN'T EXIST, THEREFORE, CREATE NEW NODE .
ILLEGAL NAME: TRY AGAIN -
LEGAL NAME: SAVE NAME, NUMBER AND TYPE £
SNAP INTO QUEUE
N SET UNIT NUMBER OF 1ST ALTERNATE
IF THERE IS A 2ND ALTERNATE THEN PROCESS 2ND ALTERNATE
ELSE BRANCH TO OUTPUT SECTION

PROCESS 2ND ALTERNATE

.
I 2508
NN AR

- NODE DOESN'T EXIST, THEREFORE, CREATE NEW NODE
" ILLEGAL NAME: TRY AGAIN
Iy LEGAL NAME: SAVE NAME, NUMBER AND TYPE
. SNAP INTO QUEUE
SET UNIT NUMBER OF 2ND ALTERNATE

e OUTPUT LINE TO APPROPRIATE SCROLLED AREA
51 SUBROUTINE GETTYP(FLDVAL,ITYPE) -
PURPOSE: SEARCHES NODE NAME FOR ANY WORD TEAT OCCURS IN NODE
DICTIONARY. N

PARAMETERS : N
| FLDVAL ==> NODE NAME

ITYPE =-> UNIT TYPE OF FLDVAL

1)
v DO FOR EACH WORD IN NODE NAME ;f
GET NEXT WORD FROM STRING. SEARCH DICTIONARY. N
]l FOUND WORD IN DICTIONARY; SAVE TYPE E
O DID NOT FIND WORD IN DICTIONARY: SET TYPE TO BLANKS

SUBROUTINE GETWORD(FVALUE, IWORD) 23

[AY o,
o PURPOSE: FINDS THE FIRST WORD CONTAINED IN A STRING. %
- ‘

" PARAMETERS : i
- (INPUT) ;
- FVALUE ==> STRING CONTAINING WORDS o
(OUTPUT) -

& FVALUE ==> INITIAL VALUE WITH 1ST WORD REMOVED N
o IWORD ==> 1ST WORD CONTAINED IN FVALUE g

. IF ALL BLANKS THEN NO WORD IN STRING .
= REMOVE LEADING BLANKS 5
IF LOCATION OF BLANK IS O THEN NO BLANK FOUND AND WORD IS ENTIRE i

. STRING. OTHERWISE, WORD IS ALL LOCATIONS IN STRING PRECEDING o
7 LOCATION OF BLANK. -
" SUBROUTINE GIMME(NPTR, LEN, ISPACE) -

SEGMENT GET VIRTUAL SPACE

PARAMETERS :
g NPTR ==> POINTER TO BLOCK ALLOCATED
ip LEN ==> LENGTH OF BLOCK TO ALLOCATE
, ISPAGE == VIRTUAL MEMORY TO GET BLOCK FROM

v
'i'.l-;";‘ 'l ’1. g

SEARCH GARBAGE LIST

DO UNTIL LIST ENDS T
IF (SIZE.EQ.LENGTH) THEN -
SET PTR TO FIRST BLOCK
SNAP GARBAGE PTR .

ALLOCATE VIRGIN STORAGE .

UPDATE VIR SPACE PTR N

STORAGE OVERFLOW

%2ERO SPACE BLOCK

END SEGMENT

™ SUBROUTINE HCDATA

- SUBROUTINE IS NOT IMPLEMENTED YET

1 SUBROUTINE INSTRUC

‘.'.4‘ .

UNY

PURPOSE: PUT FORM CONTAINING INSTRUCTIONS ON SCREEN.
PUT INSTRUCTION FORM ON SCREEN

WAIT FOR USER TO HIT <RETURN»

SUBROUTINE INTCHR(VALUE, ISIZE, STRING)

r .,
»
PR
r

-'l‘l
PR
et

PURPOSE: CONVERTS AN INTEGER TO ITS ASCII REPRESENTATION.

'
Yoy v o vy

“
2.

PARAMETERS:

VALUE ==> INTEGER VALUE TO CONVERT
. LENGTH ==~> NUMBER OF DIGITS TO CONVERT
’" STRING ==> ASCII REPRESENTATION OF VALUE

3

P

Ny

1 SUBROUTINE LIMITS »
SUBROUTINE NOT IMPLEMENTED YET
1 SUBROUTINE MENU

4

PURPOSE: ALLOWS USER TO SELECT WHICH FUNCTIONS ARE IMPLEMENTED
IN THE PREPROCESSOR.

Ay

PUT MAIN MENU ON SCREEN

GET MODE FROM USER AND CONVERT TO INTEGER
GET OPTION FROM USER AND CONVERT TO INTEGER
SUBROUTINE NODE

T
W "l’
AL

[5% s

PURPOSE: USED TO CREATE AND EDIT THE NODE DATA SET.

EXR |

e

FMS TERMINATOR CODES

'l
R
‘1.\! IY'

4
.

P

Xk kX KkXKk*X XX CREATE MODE ¥XXKX KX XXX

GET MAIN NODE

N NODE NAME MUST BE UNIQUE AND MUST CONTAIN ONE WORD WHICH =
‘ w IS IN THE NODE DICTIONARY.

STORE NAME, NUMBER, AND TYPE o
SNAP INTO QUEUE

PROCESS FIELD TERMINATOR ;f

.
GET COMMANDER o
;\
SAVE POINTER TO COMMANDER g-
(&
LE |

] PROCESS FIELD TERMINATOR

- ~ GET 1ST ALTERNATE FOR COMMANDER
IF NO COMMANDER THEN SEND MESSAGE; REMOVE 1ST ALTERNATE FROM ~
SCREEN; BRANCH TO GET COMMANDER
f: SAVE POINTER TO 1ST ALTERNATE

PROCESS FIELD TERMINATOR e

ORI M -
R -1

GET 2ND ALTERNATE FOR COMMANDER

|

rf IF NO COMMANDER THEN SEND MESSAGE; REMOVE 2ND ALTERNATE FROM
 C SCREEN; BRANCH TO GET COMMANDER
IF NO 1ST ALTERNATE THEN SEND MESSAGE; REMOVE 2ND ALTERNATE

% 'r N

L

N FROM SCREEN; BRANCH TO GET 1ST ALTERNATE -4
E} SAVE POINTER TO 2ND ALTERNATE
R PROCESS FIELD TERMINATOR

GET SUBORDINATE AND ITS ALTERNATES -

GET USER ENTRY 5
VERIFY ENTRIE 5

-
-,
RL%%

San

P AR IR G Il G A R s S B P iinie s Bk Bl ol LAl i & e b~
v

IF PSUB IS O THEN NULL ENTRY, THEREFORE, NO MORE SUBORDINATES
ADD SUBORDINATE TO BOTTOM OF QUEUE

PROCESS FIELD TERMINATOR

GET NETWORK NODES

GET USER ENTRY

VERIFY ENTRIES

IF PCOM IS O THEN NULL ENTRY, THEREFORE, NO MORE NETWORK NODES
ADD NETWORK NODE TO BOTTOM OF QUEUE

PROCESS FIELD TERMINATOR

kXXX XEXXKXE EDIT MODE I EEEERE SRR

PRINT MAIN NODE AND ID

PRINT COMMANDER AND ID

PRINT 1ST ALTERNATE FOR COMMANDER AND ID

PRINT 2ND ALTERNATE FOR COMMANDER AND ID

PRINT SUBORDINATES AND THEIR ALTERNATES AND ID'S
PRINT OTHER NETWORK NODES AND THEIR ALTERNATES AND ID'S

GET NAME AND INDEX OF CURRENT FIELD. SAVE OLD VALUE.
GET ENTRY FROM USER

IF ENTRY EQUALS OLD VALUE THEN NO CHANGE - BRANCH TO PROCESS
FIELD TERMINATOR

CHANGE MAIN NODE NAME

MAIN NODE NAME MUST BE UNIQUE
DETERMINE IF NAME IS VALID, I.E. UNIT WORD OCCURS IN DICTIONARY
LEGAL NAME - SAVE NAME AND TYPE

CHANGE COMMANDER OR IT’'S ALTERNATES

LENGTH IS THE OFFSET FROM CURPOS FOR THE POINTER FOR
EITHER THE COMMANDER OR IT'S ALTERNATES

PROCESS BLANK ENTRY

IF ENTRY WAS IN COMMANDER FIELD:
IF NO ALTERNATES THEN IT IS LEGAL TO DELETE COMMANDER.
IF ALTERNATES EXIST THEN SEND MESSAGE, PUT OLD VALUE FOR
COMMANDER BACK ON SCREEN, AND BRANCH TO PROCESS FIELD
TERMINATOR KEY.

IF ENTRY WAS IN 1ST ALT. FOR COMMANDER FIELD:
IF NO 2ND ALTERNATE THEN IT IS LEGAL TO DELETE 1ST ALTERNATE.
IF 2ND ALTERNATE EXISTS THEN SEND MESSAGE, PUT OLD VALUE FOR
15T ALT. BACK ON SCREEN, AND BRANCH TO PROCESS FIELD TERMINATOR

'
L

)

rs

8

. A

PROCESS A NON-BLANK ENTRY

IF ENTRY WAS IN 1ST ALT. FOR COMMANDER FIELD:
IF COMMANDER EXISTS THEN IT IS LEGAL TO ADD 1ST ALTERNATE.
IF NO COMMANDER THEN SEND MESSAGE, REMOVE 1ST ALTERNATE FROM
SCREEN, AND BRANCH TO PROCESS FIELD TERMINATOR KEY.

IF ENTRY WAS IN 2ND ALT. FOR COMMANDER FIELD:
IF 1ST ALTERNATE EXISTS THEN IT IS LEGAL TO ADD 2ND ALTERNATE.
IF NO 1ST ALTERNATE THEN SEND MESSAGE, REMOVE 2ND ALTERNATE
FROM SCREEN, AND BRANCH TO PROCESS FIELD TERMINATOR KEY.

DETERMINE IF NAME IS UNIQUE

ENTRY DOESN'T EXIST; CHECK IF VALID NAME, I.E. UNIT WORD

OCCURS IN DICTIONARY

CREATE NODE

SAVE POINTER TO NODE

VRITE NEW ID TO SCREEN AND BRANCH TO PROCESS FIELD TERMINATOR KEY

CHANGE SUBORDINATE AND ALTERNATES

GET SUBORDINATE NAME FROM FIELD
GET 1ST ALTERNATE FROM FIELD
GET 2ND ALTERNATE FROM FIELD
VERIFY ENTRIES

ADDING NEW ENTRIES

CREATE NEW ENTRY FOR SUBORDINATE QUEUE

SET BACK POINTER OF NEW ENTRY TO LAST ENTRY OF QUEUE

SET SUBORDINATE AND ALTERNATE POINTERS TO APPROPRIATE VALUES
IF QUEUE IS EMPTY THEN ADD NEW ENTRY TO TOP ELSE ADD TO BOTTOM
BRANCH TO PROCESS FIELD TERMINATOR KEY

CHANGING EXISTING ENTRIES

BRANCH TO PROCESS FIELD TERMINATOR KEY

CHANGE NETWORK NODES AND ALTERNATES

GET NETWORK NAME FROM FIELD

GET 1ST ALTERNATE FROM FIELD

GET 2ND ALTERNATE FROM FIELD

VERIFY ENTRIES

ADDING NEW ENTRIES

CREATE NEW ENTRY FOR NETWORK QUEUE

SET BACK POINTER OF NEW ENTRY TO LAST ENTRY OF QUEUE

SET NETWORK AND ALTERNATE POINTERS TO APPROPRIATE VALUES
IF QUEUE IS EMPTY THEN ADD NEW ENTRY TO TOP ELSE ADD TO BOTTOM
BRANCH TO PROCESS FIELD TERMINATOR KEY

CHANGING EXISTING ENTRIES

PROCESS FIELD TERMINATOR

SUBROUTINE NODEDIC

-r%,
V)

Tttt
L0000
AN

v, .":{_:.'

EANRR

vy Y,”
‘7,

[)
.
L0

W aS

£}

r
LAY

.

.-
4

PURPOSE: CREATE AND EDIT ENTRIES WITHIN THE NODE DICTIONARY.

FMS TERMINATOR CODES

L EREREEEEES] CREATE MODE XX RXEEXKXX

GET TYPE

GET NAMES

SORT BY TYPE

SORT BY NAME

L ERERE & B R R EDIT MODE I EREEERESE S

SET TOP TO FIRST ENTRY IN DICTIONARY. SET BOTTOM TO LAST ENTRY
THAT HAS SAME TYPE AS FIRST ENTRY.

INITIALIZE FIELDS

CHANGE EXISTING NAME

ADD NEW NAME

SORT BY TYPE

SORT BY NAME

IF NEW NAME WAS ADDED BEFORE FIRST ENTRY OF IT'S TYPE
THEN UPDATE POINTER TO TOP

IF NEW NAME WAS ADDED AFTER LAST ENTRY OF IT'S TYPE
THEN UPDATE POINTER TO BOTTOM

CHANGE EXISTING TYPE

RESORT TYPE

PROCESS FIELD TERMINATOR

SUBROUTINE POUT(MEMORY, NUM, LENGTH)

PURPOSE:
PRINT OUT CONTENTS OF VIRTUAL MEMORY

PARAMETERS :
MEMORY ==> VIRTUAL MEMORY TO PRINT
NUM ==> NUMBER OF LINES TO PRINT
LENGTH ==> NUMBER OF VALUES TO PRINT PER LINE

SUBROUTINE PREAM

PURPOSE: ALLOV USER TO CREATE AND EDIT THE PREAMBLE
DOCUMENTATION.

FMS TERMINATOR KEYS

*** CREATE MODE ***

CLEAR DISPLAY AND PUT THE FORM FOR THE PREAMBLE ON THE SCREEN
INITIALIZE THE CURRENT FIELD NAME AND INDEX

DO UNTIL USER HITS <RETURN> KEY

GET USER ENTRY FROM CURRENT FIELD

FIRST ENTRY - SAVE VALUE; SET ROOT POINTER

QUEUE NOT EMPTY - SAVE VALUE; ADD TO BOTTOM OF QUEUE

PROCESS FIELD TERMINATOR

IF «TAB> KEY THEN SET CURRENT FIELD TO NEXT FIELD
IF <RETURN> KEY THEN BRANCH TO END OF SUBROUTINE

o 4
’l
X

-

”~
%

IF QUEUE IS EMPTY THEN CANNOT EDIT; BRANCH TO END OF
SUBROUTINE

CLEAR DISPLAY AND PUT THE FORM FOR THE PREAMBLE ON THE SCREEN .
INITIALIZE POINTER TO TOP OF QUEUE; INITIALIZE CURRENT FIELD w
NAME AND INDEX Y

PUT EXISTING DOCUMENTATION ON SCREEN

SET POINTER TO TOP OF QUEUE AND FIELD INDEX TO ONE Eg

DO UNTIL USER HITS <RETURN> KEY

GET USER ENTRY FROM CURRENT FIELD

NEWV LINE - SAVE VALUE; ADD ENTRY TO BOTTOM OF QUEUE; UPDATE ’
POINTER TO LAST LINE; BRANCH TO PROCESS FIELD TERMINATOR &

e OLD LINE - UPDATE VALUE ’

i
.’ oy :"?‘7 ’l“f‘

RO, &

-
s
R

e PROCESS FIELD TERMINATOR

- IF <TAB> KEY THEN SET CURRENT FIELD TO NEXT FIELD o
) IF <BACKSPACE> KEY THEN SET CURRENT FIELD TO PREVIOUS FIELD X

IF <RETURN> KEY THEN BRANCH TO END OF SUBROUTINE N
- SUBROUTINE QPRINT(PROMPT)

- T
»

v . -
’)i

PURPOSE: PRINT OUT CONTENTS OF NODE DICTIONARY QUEUE

X PARAMETERS : <
- PROMPT ==> HEADER STRING TO OUTPUT ALONG WITH CONTENTS -
OF NODE DICTIONARY QUEUE. o

i OUTPUT HEADER PROMPT .
DO FOR ALL ENTRIES IN NODE DICTIONARY QUEUE]

OUTPUT FORWARD AND BACKWARD POINTERS FOR BOTH TYPE AND NAME E

SORTING. OUTPUT TYPE AND NAME. ;
SUBROUTINE RELEAS(NPTR, LEN, ISPACE) o,

1
!! SEGMENT RELEASE PUTS STORAGE ON GARBAGE LIST ~

PARAMETERS : -

o NPTR ==> POINTER TO BLOCK TO RELEASE e

k- LEN ==> LENGTH OF BLOCK TO RELEASE y
ISPACE ==> VIRTUAL MEMORY BLOCK IS CONTAINED IN

- CHECK BAD PTR, LEN W
DO UNTIL NO GARBAGE EQUAL LENGTH X
END DO o
SNAP IN SPACE -
GARBAGE LENGTH NOT EKNOWN ok
PUT STORAGE ON GARBAGE LIST
I END SEGMENT ~
o SUBROUTINE RESTORE N
EEXEXEXX XXX XXX B XXX EE XX EREAEE XL XX L XXX XX N XXX E XX XXX X XK KX RREDR ' 4.
re * DYNAMIC MEMORY AND COMMON VALUES ARE READ FROM A FILE R
f} * INTO MEMORY AS PHYSICAL STRUCTURES. THIS FILE IS
* CREATED BY SUBROUTINE STORE. -
XXX XXX XXX REREXXXX L XXX E LN XEXEXEXX XL ENXEE XX R R RERXRRE XX ’.-,
RESTORE COMMON VARIABLES -
RESTORE DYNAMIC MEMORY -
SUBROUTINE RULES o
SUBROUTINE IS NOT IMPLEMENTED YET
SUBROUTINE SAVE =
o
N

I EEREREEERERE SRR R EERE R E R R R R R R ER R R R R R R R EE R R R R R R ERRRERSE]

AN

TR -

g
| 5V

e
F A
e T
.
g

L g

* DYANMIC MEMORY AND COMMON VALUES ARE WRITTEN TO A FILE
* AS PHYSICAL STRUCTURES. THIS FILE MAY BE USED TO

* RESTART THE SIMULATION AT THE POINT WHERE IT LEFT OFF.
IR RS R R EEEREEE R R R R R R R R E R R R R R R R R R R R R R R R R R R RS R R R R R R R R R R
SAVE COMMON VARIABLES

SAVE DYNAMIC MEMORY

SUBROUTINE SCRBE(FLDNAM, POS, BOTTOM,LINE)

< -

e T 3

e
Nat
T

PURPOSE: SCROLL A SCROLLED AREA BACKWARD

:g -
e PARAMETERS : 4
FLDNAM ==> NAME OF FIELD IN SCROLLED AREA TO SCROLL o
-, POS ==> POINTER TO NODE THAT IS DISPLAYED ON THE o
= CURRENT LINE OF THE SCROLLED AREA. A
BOTTOM ==> POINTER TO NODE THAT IS DISPLAYED ON THE :
g LAST LINE OF THE SCROLLED AREA. B
o LINE ==> LINE NUMBER OF THE CURRENT LINE OF THE 3
. SCROLLED AREA. Y
i
2 IF NO LAST LINE OF SCROLLED AREA THEN NO NODES ARE DISPLAYED A
o IF CURRENT LINE IS BLANK THEN CURRENT LINE IS BELOV LAST ;
DISPLAYED LINE. THEREFORE, SET CURRENT LINE TO LAST _
s DISPLAYED LINE. o
e IF CURRENT NODE IS TOP OF QUEUE THEN SEND MESSAGE ELSE =
g SET CURRENT NODE TO PREVIOUS NODE o
. *+sx TOP OF SCROLLED AREA *** -
WRITE SCROLLED LINE TO SCREEN '
s *x+ NOT TOP OF SCROLLED AREA ***
MOVE CURRENT LINE OF SCROLLED AREA UP ONE LINE
o SUBROUTINE SCRFWD(FLDNAM, POS,BOTTOM,LINE) '
PURPOSE: SCROLL A SCROLLED AREA FORWARD i
L PARAMETERS : "
FLDNAM ==> NAME OF FIELD IN SCROLLED AREA TO SCROLL .
an POS =~> POINTER TO NODE THAT IS DISPLAYED ON THE
- CURRENT LINE OF THE SCROLLED AREA.
BOTTOM =-=> POINTER TO NODE THAT IS DISPLAYED ON THE
- LAST LINE OF THE SCROLLED AREA.
~ LINE ==> LINE NUMBER OF THE CURRENT LINE OF THE 2
< SCROLLED AREA r
v IF NO LAST LINE OF SCROLLED AREA THEN NO NODES ARE DISPLAYED ‘
e IF CURRENT LINE IS BLANK THEN DO NOT ALLOW TO SCROLL FORWARD "

I.E. ONLY ONE BLANK LINE AT BOTTOM OF SCROLLED AREA CAN BE
L USED TO INPUT NEW ENTRIES.

*** BOTTOM OF SCROLLED AREA *** .

) WRITE SCROLLED LINE TO SCREEN o
. **s NOT BOTTOM OF SCROLLED AREA N
R MOVE CURRENT LINE OF SCROLLED AREA DOWN ONE LINE

1 SUBROUTINE SCRLINE(POS,FVALUE) i}

Tt . Ce 4t N e T e T T e e e T Tt B U R N el L PR U SRS

." -. l.. l-“-l - . et et e . . B .
----- YL e ™ ot a e S e e e Nt e e e, e, S e S Y N A
" YA N W P AP L AT A AT o PR A I VO P R PR T TR T P P

2
3
PURPOSE: CREATE STRING TO OUTPUT TO THE CURRENT LINE OF
Sl A SCROLLED AREA
- PARAMETERS : e
iy POS ==> POINTER TO NODE TO CONVERT TO GET FIELD e
24 VALUES FOR SCROLLED LINE. o
FVALUE ==> FIELD VALUES FOR SCROLLED LINE. :
- s
¢ -
NULL ENTRY, THEREFORE INITIALIZE TO BLANKS -
[INITIALIZE PORTION OF SCROLLED LINE THAT CONTAINS MAIN)
NODE AND IT'S ID
e INITIALIZE PORTION OF SCROLLED LINE THAT CONTAINS 1ST .
P ALTERNATE AND IT'S ID -
~ INITIALIZE PORTION OF SCROLLED LINE THAT CONTAINS 2ND o
. ALTERNATE AND IT'S ID R
;S SUBROUTINE SETFLAG e,
PURPOSE: CREATE FLAG NODE. INITIALIZE ALL VALUES TO 2ERO. =
E GET VIRTUAL MEMORY SPACE =
INITIALIZE 20 PRINT FLAGS ey
; INITIALIZE THE 3 OPTIONAL PRINT MODIFIERS Lk
i' INITIALIZE DEBUG PRINT FLAG, DEBUG TIME ON, AND DEBUG TIME OFF -
1 SUBROUTINE SIMCTRL R
o, v rl‘
- PURPOSE: ALLOW USER TO CHANGE VALUES OF PRINT FLAGS. =
%S
g! FMS TERMINATOR KEYS NR
::
A CLEAR SCREEN AND PUT SIMULATION CONTROL FORM ON SCREEN ij
e W
o PUT VALUES IN APPROPRIATE FIELDS »
GET USER ENTRY s
“ e
.. ENTRY WAS A PRINT CONTROL FLAG o
- 3
IF ENTRY NOT EITHER 'O’ OR ‘1’ THEN ILLEGAL; RESTORE OLD VALUE; 2
GET ENTRY AGAIN ot
t} LEGAL ENTRY - SAVE NEW VALUE; BRANCE TO PROCESS FIELD TERMINATOR 3
=
7 ENTRY WAS AN OPTIONAL OUTPUT TIME - SAVE NEW TIME; BRANCH TO N
2 PROCESS FIELD TERMINATOR X
r :
" ENTRY WAS DEBUG OUTPUT FLAG o

’ IF ENTRY NOT EITHER ‘O’ OR ’'l’ THEN ILLEGAL; RESTORE OLD VALUE;
GET ENTRY AGAIN

.........................

ST AL et A A A I UL IIL SIS P N I R S S P R R S P S S T a T TaT At e T
e 'w:p‘,‘.'._ »* . A -.-,._,\’\ DI A RO O T AT R T T i T s S S S ALY

xs

LEGAL ENTRY - SAVE NEW VALUE; BRANCH TO PROCESS FIELD TERMINATOR

ENTRY WAS DEBUG ON/OFF TIME - SAVE TIME; BRANCH TO PROCESS FIELD
TERMINATOR

Py

PROCESS FIELD TERMINATOR

—
s
[y

N SUBROUTINE SNAPQ(PTR, NWORD, PINS, PINE)

PURPOSE: .

INSERT AN ENTIRE QUEUE OF RECORDS INTO ANOTHER QUEUE OF e
RECORDS. ASSUMES THAT THERE IS A CORRESPONDING BACK POINTER fl
FOR THE FORWARD POINTER. ASSUMES BACK POINTER IS OFFSET FROM !
ITS FORWARD POINTER BY 1. 1Y

e

| ou m 2
:)
AR

PARAMETERS:
PTR ==> ROOT OF BASE QUEUE >
NWORD ==> OFFSET FROM PTR TO SORT ON Y
PINS ==> POINTER TO TOP OF QUEUE BEING ADDED 2
PINE ==> POINTER TO BOTTOM OF QUEUE BEING ADDED w

oh

»

-

EMPTY QUEUE -~ MAKE FIRST RECORD w19

INSERT BEFORE RECORD %

-

INSERT BEFORE 1ST RECORD

< INSERT AFTER LAST RECORD g
-‘.‘] i
1 SUBROUTINE UNSNAP(NROOT, NPTR, ISPACE) N
4

!! REMOVES AN ENTRY FROM QUEUE 26
3 RS
, SET FORWARD AND BACK POINTERS o
o IF NODE BEING REMOVED IS NOT 1ST NODE IN QUEUE THEN SET o)
o FORWARD POINTER OF PREVIOUS NODE TO NEXT NODE. o
IF NODE BEING REMOVED IS 1ST NODE IN QUEUE THEN SET ROOT -

TO NEXT NODE s
IF NODE BEING REMOVED IS NOT LAST NODE IN QUEUE THEN SET

‘,.
"‘

BACK POINTER OF NEXT NODE TO PREVIOUS NODE.
- EEXRXRRRRR UAR ROUTINES SEXXXREK KX . :::.-

pe) INTEGER FUNCTION VALID1 IS
) -:.:-

FIELD COMPLETION UAR CHECKS IF VALUE IS BETWEEN 1 A
;5 AND THE MAXIMUM FOR THE APPROPRIATE FIELD. o

GET FIELD NAME OF CURRENT FIELD

\e GET VALUE AT CURRENT FIELD L

ﬂ; CONVERT VALUE TO INTEGER e

= GET MAXIMUM LEGAL VALUE FOR CURRENT FIELD :
CONVERT MAXIMUM LEGAL VALUE TO INTEGER

Fg IF CURRENT VALUE IS BETWEEN 1 AND MAXIMUM LEGAL VALUE ‘

= THEN RETURN SUCCESS CODE ELSE SEND ERROR MESSAGE AND :
RETURN PAILURE CODE.

v,
v
Lo

P

..r
[R

B.2. Program C3EVAL

There are three distinct elements simulated by C3EVAL.
The first is the C3 environment. It consists of a set of nodes
(command posts), paths (lines of communication), and processing
of messages and combat data. Figure 5 gives an example of a
command network that could be represented in the model. 1In this
example, Div units wculd be designated as the combat level units.
Each one has specific ground-based weapon systems (tanks, AAA,
infantry, etc.) specified for its own forces (Blue) and for its
opposing force (Red). In addition, a notional airbase has
aircraft (Blue only) which are requested by air tasking order
(ATO) messages for specific combat uits at a specified game time
interval. These weapon systems and aircraft sorties are the
second element.

The third element of C3EVAL is the combat process. This is
modeled by using IDA's anti-potential potential (APP) method of
calculating combat value and force ratios. Attrition is
calculated by multiplying the APP effectiveness matrix times each
unit's weapon system vector. The sequence of events in the model
is:

- Limit input messages

- Process messages received

- Create messages based on command post actions

- Limit output messages

- Allocate messages to network

- Put messages into communication status

- Process requests for CAS

- Update combat unit's weapon system

- Calculate combat drawdown

The C3 portion of C3EVAL has been implemented in a user-
controlled dynamic memory (DM) environment. This DM is a large

38

o a5 0]

(£

7

s er e Wl o

DS CRCY

B

(TR

A o

NP4
A8,

WACVEML WM "o Bovowow » w -~ = » .

o

SHAPE

| AFCENT

E AAFCE

'1-‘.

7 CENTAG ATAF
CORPS CORPS CORPS corps | lc

' ORPS

't‘r" TACIASOC MAIN MaiN [fraciasoc]™ rean AToc

{ L |

, COMMUNICATIONS LEGEND:

‘ 1. SECURE VOICE
2. VOICE | | | |

" : g:)emL DIV piv |{ owv | [ace

% . COURIER Tace | [race [1race [1race woc

8~’0-.3-2L

".
[
I d
(]
-~
) <
U
I"'
o
o«
}
~...
e 7
" Ix:
0' . <.
..

.~y
.
-

Figure 5: C-3 NETWORK

i

!'
P
i P
. LA
PR R I A

kS
s

. 39

\’.".l

.

od 4
~
h

hl

“»
o

T R T AT AR LT S S S
% 0 O 7 STt DAL R A SGON

t-\

-

."

- D)
« n-,\
] single-dimension common area that is segmented, allocated, and o
!‘ reused by two simple C3EVAL utilities. The effect of this imple- 3
mentation decision is a code that provides for a vast variation A

in the number of nodes, paths, or messages that may be used from ;:

" different data bases and scenarios without major parameter W
changes in the model. (Only the maximum size of DM is modified L

g to provide efficient computer memory usage.) ‘:
. This "dimensionless" code is further enhanced by the use of e
&Z linked lists of data structures in addition to the standard e
common arrays. The utilities section of this manual describes f

;ﬁ the DM subroutines and those that assist in the use of linked jﬁ
B lists. The combat force ratio calculations were extracted from li}
o the IDA seven methods of evaluating forces based on antipotential o
L potential. This code uses explicit dimensions for the number of -
C. different combat systems that will be evaluated. This size was =
o set to 11 distinct combat systems for the current model. Nt
b

i' The three functional modules controlled in C3EVAL as shown k-f
in Figure 6 are entered through SUBROUTINES INPUT, EVENTS and .
OUTPUT. The C3EVAL process starts with determination of the f}

mode. (Initial run starting at time zero or restart run at Time :i

T). Interpretation of input and output unit numbers and setting :3

!! of DM to zero is accomplished for time zero runs. DM is zeroed 0
by the utility SUBROUTINE DMINIT. For Time T starts, SUBROUTINE f::::

F; RESTOR is called to reset all dynamic memory and model para- éi
’ meters. S
T =
N :',,‘
L :::::.»
‘q\' ..-_.
- &
- i‘-
'...f .\'.
ot N
v ".-
w

N

A

[.
f-s N
o 40

i & ol
:3

. @

\ o

c3 EvaL 35

- INPUT EVENTS OUTPUT s

e INPUTC EXTMSG SAVE

INPUTA NODE

AIROPS

. .
l‘. l‘ I'

COMBAT

.
WO

Figure 6. C SEVAL Modules

’s(\(' 0
'; ‘{': ‘v’ N .‘-' .

10-17-85-15M

! eps ‘)_"
" Unclassified o
e
r o
v:. . ‘_:-
v A
o
"
1% y
- ’-
2 -
“ ..
- re
l}‘-
O
"~ .: ®
% 2%
l. ..
Ne
e ‘::-f
41 :: '
~

o~

=
E; .
~
’ 3-”:.
5 2
SUBROUTINES INPUT and RULEIN are called for time zero runs gﬁ
ii to establish the decision rules and initial conditions for ¢3 and
. combat. Their operation is described in the next section. -3
o SUBROUTINE EVENTS controls all C3 events, combat calculations, ;5’
55 and the game clock. After all requested simulated combat is &ﬁ
calculated, summary output is produced by OUTPUT and c3EVAL stops -
o the run. The hierarchy of subroutines is shown in Figure 7. {f
) This figure does not show the attrition module subroutines or the i{
&% utilities. ﬁ:
:2 B.2.a. Control Module o
o The main program C3EVAL performs all the top-level functions i;
;% of file interface, determination and control of the mode of oper- i:
w ation, data input, event simulation and output. The input files
- are: o
o c3paTa c3 descriptions iiz
. CBDATA Ground combat systems data éi
il AODATA Aircraft operations data)
N C3RULE Decision Rule Data E;
E; RESTOR All data necessary to continue a previous run Sﬁ'
The output files are: QP
! c3ecHO Echo of input data .
v c3TIME All reports, error conditions, and debug data
- c3sum End of run summaries EQ
e SAVE All data necessary to restart from end ¢of a run l?
- TIMET Message flow data for each time increment !
- LOSST Combat losses for each unit for each time i{
increment %
- Temporary work files are: E?
e c3NODE Changes to NODE data to occur during game =
c3umMno Changes to node input and output limits to occur b
during the game. ;Ei
E% c3LINK Changes to link capacities to occur during the ;;;
game. <

T

)

B K 4

TR

X

Opu] K, Y. p
N AL et et ‘ \.....\............ - o

h‘lﬁ F’ ‘f.,! .v;\h-\.l-.us-a\l-c?. l‘.-th._ ,w\ fﬁ..f.dnu!(.-.\ua\.l\ e .-.-...-..A-.Hu-.- ‘ -.\u.--w-.-.\\\ w-.\u--”q-\;. qsﬁ\oﬁ _\-ﬂbs‘\hv hﬁ\ -_ JH\(\-.\J\ -.~ ..-W.-n N - et -... ..N. M -.-.- L ’ el ~.. ¢
payissejun
W 6-G8-21-0I
Ayorery aunnoiqng AT D L amSiy
umoys 1ou UORLIIY.,
UMOUS Jou SN
n,.}oz
325@: cms__>o=
...:ouﬁmgoééa om_ﬂ;os_
73001Y__DSWNVH_ 1NOSSW dATINI dNLVIS _NIHOLV _OTVOLV _INOGLY
$300Hd
DSWAON ~ AvI3aw

anN3s__1noil 1vJo0TY WITNONW

Om—ux‘si . 3dON
1dS1X3 MNINHO NWIMHO 3AONHO JHOJHO

SO lLdd_ SOISVI__ OSWIVIH dVN mzhﬁ\cmivzi m— §

1NdinO_ 1NOTNH 1vawod SdoHly SW1X3 1NdNIL NOLVIS ILV1S

3INHAY VINdNI JL1NdNI

\\\\

A3 1HdINH NI3TNH__1NdNl_HOL1S3H _ L1INING TOHINOD

COSNd__ 19SNd

VYiVAOWN indinO SiN

noivi

S 1 CANBOOCEERCCOILYY: BEPOOEEES EEESEANE AR SR BERNOCREE < ¢ ¥ B

o

B.2.a(l). Subroutine CONTRL

CONTRL is called by C3EVAL to read the print and debug
parameters and to read the preamble from the C3DATA file. The
preamble is used to document the contents of the file, to easily
identify variations of a basic scenario and to assist in relating
other files and output to a specific run. The first 40 char-
acters of the top line of the preamble will appear as the sub-
title on all graphics. The preamble may contain as many lines of
80 characters as necessary. It must be completed with "END " as
the first four characters in the last line. <Contrl copies the
preamble to files C3TIME, C3SUM and TIMET. The definitions of
the flags are shown in Figure 8 which is a PreProc screen. The
flags are echoed to file C3ECHO.

PRINT CONTROL FLAG OPTIONAL OUTPUT
ALL MESSAGES AT ALTERNATE NODE SPECIFIC NODE]
ALL MESSAGES ON INPUT QUEUES START TIME s}
ALL MESSAGES ON OUTPUT QUEUES STOP TIME 0
ALL MESSAGES ON FUTURE QUEUES
ALL MESSAGES BEING HELD DEBUG OUTPUT FLAG 0
ALL MESSAGES DELETED START TIME 0
STATUS OF RULE STRUCTURE STOP TIME 0

CAS TAKE OFF SCHEDULED

not assigned

not assigned

TRACKED MESSAGES AT ALTERNATE NODE
TRACKED MESSAGES ON INPUT QUEUES
TRACKED MESSAGES ON OUTPUT QUEUES
TIME T OUTPUT ON FILE 14 REQUIRED
COMBAT LOSS VECTORS

FORCE RAT10 CALCULATIONS

RULE STATUS AT FINAL TIME

not assigned

RANDOM PROCESSING REQUIRED

USED INTERNALLY FOR SUM OF FLAGS

(NOTE: FOR FLAGS 0 --> OFF
1 --> ON)

X --X-E-N-X-X-X-N-N-N-F-N-N- NN NN N

HIT <RETURN> TO RETURN TO MAIN MENU

Figure 8: PRINT AND DEBUG PARAMETERS

44

.-'.l’.(-‘-:“.t;‘;‘:. . SRR A S _"....--.

s & SRS

LN N

oy

LY

~ v _.

>SS

XX

L]
ot
O

o,

a, e

.. L

Mt 2 S S W
A

. v
A
el

o

N
P
DR o

PV Y

.l PN
LS

B.2.a(2). Subroutine DMINIT

DMINIT is called by C3EVAL when a game is to be started at
time zero. It prepared DM for use by initializing the next
available memory locator (MPTR) to 1 and setting all DM and the
garbage pointer to zero. The garbage pointer is the root of the
reuseable memory block queue.

B.2.b. Input Module

Input data is of two types. The basic scenario data (or
time zero data) is read by the Input Sub-routines and its sub-
ordinate routines. See Figure 9. The event (or Time T data) is
read by subroutines under control of the Events. See Figure 10.
The Block Data FRatio is included here because of its function.
It is not called by Input, of course.

Input I INPUT '
FRATIO

Block Data FRatio

[[NPUTA |

| INPUTC |

InnutA

InputC

———{RULEH@'
Ruleln

EdRule

Figure 9: SCENARIO INPUT SUBROUTINES
45

-
-y
a'a

MM

"5 ¥
e

P
P
LN

A

Events

Statln

ExtMsq

T InPut

ChForc

ChLim

ChLink

ChNode

Figure 10: TIME T INPUT SUBROUTINES

B.2.b(1l). Subroutine Input

SUBROUTINE INPUT reads node, link, and limits data in a
manner that allows the user to build this file in alternative
styles, depending on the form most applicable to the analysis
process. Data is read from a file identified by the variable INP
which is set to one in C3EVAL. The general form is to read a set
name line, a header of 80 characters, and then a line of data.
The first four characters are reserved to identify the type of
input involved. All data lines must have the first four char-
acters blank. This implies that this data line belongs to the
set identified by the last set name read. Set name lines must
have one of the following set names in the first four characters:
NODE, LMNO, LINK, or PROC in order to input that type of data.
Anything other than blank as a set name will cause the input of
the data set to end (normally set to LAST). This allows the

46

x| P

e
'fl"' A

»

._. _.<'
’v‘a'n'n'-‘l L4
N . .

v
afar o

Y, T,
.

o0
'
A
y)

FA
s, % °&

‘
2
e e

analyst to put all node data togeter in file INP or to have a
mixed sequence of set types and normally grouping NODE, LMNO,
LINK, and PROC data for each unit identified. A header line must
always follow immediately after a set name line. It may be used
as comments about the data or left blank.

In the program, the NODE set is located at the top of the
subroutine. The first time a new node number is read a NODE data
structure is created and unit number, identifier and type are
set. The same node number will be required on each data line
that identifies a different destination with which the node can
communicate. Each time a new node number is found it is linked
into the node queue which has its root in NODEl in COMMON/C3/. A
destination (DEST) data structure is created for each destination
identified. The DEST data structures are linked together in the
node's destination queue. The DEST data structure is initialized
with its unit identifier and one or two destinations is the
node's commander, the commander's element in the node data
structure is set to that destination's unit identifier. If a
destination is a subordinate of the node, the subordinate flag is
set in the node's DEST block. If the input value for the sub-
ordinate flag is equal to 2 then a subordinate status data struc-
ture is created and snapped into the node's subordinate status
queue.

The NODE data is read by format (A4, 8I%5, 3A4, 24Al). The
first field is the data set type (NODE on the first line and
blank on all other). The 8 numbers are: time, unit, unit type,
destination, alternate node 1, alternate node 2, commander flag
and subordinate flag. The flags indicate the relationship of the
destination to the unit. The 3A4 field is the unit identifier
and the remaining data are comments (normally, the destination's

identifier). If time is greater than 1, the data line is written
to file C3NODE to be processed at the future time.

L]

LY

]

Y

-
i

The next set in Input is LMNO, the LiMits for iNput and
Output. It is read by format (A4, 615, 45A1). The first field
is the data set type. The six numbers are: time, unit and four
message limits. If time is greater than 1, the data line is
written to file C3LMNO to be processed at the future time. The
limits are: hold for input, delete for input, hold for output
and delete for output. The comment field may be used to document
the line (i.e., curtailed operation due to direct attack).

The next set in Input is LINK, which indicates the capacity
of each type of communication between two nodes. The format used
is (A4, 415, 110, 46Al). The first field is the data set type.
The five numbers are: time, unit, unit communications type, and
capacity. The last field is for comments. If time is greater
than 1, the line is written to file C3LINK. Notice that a link
has a node at each end and that these nodes must have been iden-
tified before any link information can be given. A particular
link should be identified only once, and the input procedure for
the LINK set is indifferent which node of the link is given first
or second. A link line is required for each type of communica-
tions desired between each node pair. The LINK process finds the
data structure for the node identified on the link input line.
Then a LINK data structure is created and linked into the destin-
ation structure for the node. The type of link and its capacity
are set in the link structure. This process is then repeated for
the node on the other end of this link. The final data set re-
cognized by Input is PROC. This type is not currently used and
exists for compatability to earlier versions.

When a non-set name is found by Input, it branches to input
combat data. This is done by a call to INPUTC. Then air opera-
tions data is input via a call to INPUTA.

48

"-"i'.v‘.l'."‘

.
K
D

ROOK

o o

AT A S S

3 B2

o~

i |

r rov

At this point, all data has been read in, but there is still
some initialization required for all node and destination struc-
tures. The first step is to replace the commanding unit identi-
fier with a pointer to the commander's node data structure.

Next, the unit type in all destination data structures are ini-
tialized by finding that data in the destination's node struc-
ture. Finally, the alternate/s are located by their unit number
and the destination data elements for alternates are set to
pointers to the alternate's node structure.

B.2.b(2). Subroutine Inputa

This routine reads in air operation's data from file AODATA.
This file has a documentation preamble which is followed by a
comment line and one or more lines containing aircraft allocation
parameters. This line is read with format (A3, 6X, 616, 10A4).
If the first field is blank, the data is processed; if it is
equal to "LAS", the data set is terminated. The six numeric
parameters are; allocating node, message number that the para-
meters are to apply, initial allocation time, number of periods
to be used in the allocation process, the maximum number of
sorties for a flight, and the maximum sorties to be allocated
throughout the specified periods. The last field is a comment
field. Inputa finds the node structure indicated, creates and
initializes an allocation structure, and snaps it into the nodes

.allocation queue.

The next data set in AODATA identifies the CRC node. A
documentation header is read. The first data line contains the
CRC node number, the alert time, enroute time, the minimum number
of aircraft that constitutes a CAS sortie, and the probability of
survival enroute of the aircraft on a CAS mission. The following
data lines must be blank in the first three columns and contain
the WOC node identifier, the aircraft type, the time the aircraft

will be available, and the number of aircraft. THEe AIROPS input

4]

F L,
S

g

‘ % ‘: ‘.;'."' NG "

vy v
a0

"
¢ "> 2

] f""‘f'

» ./ ..' ", e ., ,‘.

el m e

is completed when the first three columns are set to "END".

The program creates the CRC structure and sets NCRC in
COMMON/C3/ to this data structure. It stores the CRC data values
in that structure. For each unique WOC read, a WOC structure is
created and the aircraft availability data is stored in the READY
and RDYQ structures.

B.2.b(3). Subroutine Inputc

This routine reads in the combat weapon system values from
CBDATA for each combat level node. This file has a documentation
preamble which is followed by the generic red unit data set.

Each data line contains a red unit type, eleven values for the
weapons systems and the posture for this type unit. This data
set is completed when unit type is equal to "99999". A red table
of equipment data structure is created for each line of data and
snapped into the generic red unit queue with root in variable
NREDTE in COMMON/C3/.

The last data set read by Inputc is the combat weapon sys-
tems data. The first line read is a comment line to assist the
analysts to identify the scenario data it represents. Each data
line contains a mode identifier, unit posture, and the number of
weapons in each combat system type. It then finds the NODE data
structure that is specified, creates a CMBT data structure for
that node, and stores the number of systems in that structure.
When the NODE identifier is found to be "99999," the input is
completed.

B.2.b(4). Subroutine RdRule

RdRule reads in the command post (node) rules which consist
of three data sets. The data is read from file C3RULE. The file
has a data preamble followed by three lines of heading for the
rule parameter data set. This set is read by format (IS5, IlO,

50

T r e v e
oA 4

r:‘l‘

Y '
K

[
v,

',‘j,’-..

x,
P80,

n

415, 2X, 3A4). The variables read are; Rule number, type unit
that uses the rule, time required to perform the processes, the
minimum messages required to initiate the process, an indicator
of a periodic or reaction-type process, and the start time for
periodic processes. If the minimum messages required is zero;
then the process is done for each current message. The last
field read on each line is the title of the decision rule. This
data set is completed when a rule number is zero.

The next data set read is the input message data. It has
two lines of heading and is read by format (IS5, Il0, 3I5, 2X,
3A4). The variables read are: Rule number, unit type that
originated the message, message type, maximum age for the message
to be useful and a flag to force a message to be used only once.
This is to keep an input message that is retained for more than
one period from generating the same output message more than
once. The last field is the title of the message. The data set
is completed when a rule number is zero.

The final data set is the output messages to be created by a
rule. It has two lines of heading and is read by format (IS,
110, 215, 3(15, 16), 212, 215, I2, 2X, 3A4). The variables read
are; rule number, destination unit type, output message number,
priority, three sets of link type and capacity required, flag if
destination is commander only, oeutput flag, two alternate des-
tination unit types, the maximum time the message will remain
active in the communications network, and the title of the output
message. NOTE: This data is read into 8 arrays in COMMON/RULE/.
These arrays currently have a maximum of 300 entries. The output
flag for random process types is also used as the minimum time
between report generations.

51

S ararar < o k]

T

PR

(P IIP

".‘:‘r‘lﬂ;t'(

Y'Y

PRI
% 'y

-r.‘E
PR O
e

MO

B.2.b(5). Subroutine Ruleln

The subroutine creates the data structures OMP, IMT, and MSG
for each node. The parameters for the process, input messages
and output messages are read from file C3RULE bySubroutine
RdRule. RULEIN processes each rule in array IRULE until IRULE
(1,N) is equal to zero. For each rule number, a queue of generic
messages is created from the MSGOUT data from C3RULE. This queue
has its root by rule number in the MSGQ array. After this queue
has been created, an output message process structure is created
for each node of the type indicated as an originator of the pro-
cess. This OMP structure will have a pointer to the queue of
generic messages that will be created each time the process is
successfully initiated during the game. This success is based on
receiving the desired information at a node. This information is
indicated in an input message table (IMT). The IMT is created by
RULEIN from parameters from C3RULE and is attached to the OMP
data structure. At the completion of initializing all rule pro-
cessing, RULEIN calls SUBROUTINE RULLOUT to echo the data struc-
tures to output.

B.2.b(6). Subroutine StatIn

StatIn is a part of the input module because it initializes
the data values in a commander's status data structure. This
data is the perceptions by the commander of his subordinate
unit's strengths and combat postures. The initial perceptions
are based on the input numbers of weapon systems for the sub-
ordinates. The perceptions of the subordinates for (red) are set
to the first generic red unit that was read in and the foe unit
title is set to "uninitialize”.

StatIn is called by the events subroutine prior to entering

the combat time loop. It initializes only the nodes that have
status blocks created by Input.

e

L

P

™

T
-

B.2.b(7). Time T Input Sub-Module

C3EVAL has the ability to accept scenario based messages
created by the user and to modify combat units' force structures,
command posts’' input and output processing limits, communications
paths capacities and preplanned changes in the command structure.
These changes are indicated in input data by specifying the de-
sired game time for them to take effect. Subroutines ExtMsg and
TInPut are called by subroutine Events during each game cycle.
The other subroutines in this section; ExtSpt, ChForc, ChLim,
ChLink and ChNode are used to support these routines.

B.2.b(7)(a). Subroutine ExtMsg

This subroutine reads in all external messages from C3DATA.
These messages must be in time-sorted order. The time that a
message is to be used is read into MIN(l). If this is some
future time, processing is returned to EVENTS. When messages are
to be processed, a MSG block is obtained from DM and filled with
the input elements. If an ATO is indicated in the message, a
DATA block is obtained, the ATO data read and transferred to the
block. The ATO is attached to the message via the pointer PDATA.
Next the node that is to receive the message is found and the
message is put on the node's'input message queue. The format for
messages is (9I6). The variables read are; message times; mes-
sage type; unit type of originator of the message, destination
unit, unused field, output flag, additional data flag, priority,
and time message was created. The format for additional data is
determined by the message type. If the message type equals 3136,
the data is read by subroutine ExtSpt.. Otherwise, it is read by
format (6X, 6I6) and the variables are: support unit, earliest
support time, latest support time, type of aircraft, and number
of aircraft.

53

v vl AR AR]

v v v e w
i

LYt

LIRS

AN

>y~ . .-
- ."‘n .« ¢

-~
>
.

.27

e

5

v

AN |

.
E

D
v

‘.i".?

¢

“

n".- ‘:!

U
l.',

A Vo

el

Ty

B.1.b(7)(b). Subroutine ExtSpt

ExtSpt reads additional data for messsage type 3136 from
Cc3DATA. The format used is (6X, 416, 5X, 3A4, Il). The var~
iables read are: unit, time, type of foe, posture of foe, foe's
title, and flag to indicate additional data on the next line.
ExtSpt creates an Intel Report Data Block for each data line and
snaps the queue into the additional data pointer in the message.

B.2.b(7)(c). Subroutine TInput

Subroutine TINPUT inputs changes to characteristics during a
specified time T. The characteristics that can be changed are:
number of weapons and posture of a unit, input and output message
limits at a particular node, a node's commander or subordinate,
and the message capacity of a particular link type between two
specified nodes. The reinforcement changes are read from a for-
matted £ile. The node, limit, and link changes are read from
three unformatted files. Future changes are input and held until
the specified future clock time. There may be more than one
change per characteristic at any given clock time. The input
stream must be in time ordered sequence. When an update time
occurs, the appropriate subroutine is called to process the
change.

B.2.b(7)(d). Subroutine CHFORC

Subroutine CHFORC changes the combat values for a specified
unit number for a blue combat unit and its corresponding red com-
bat unit. If the unit number of the blue combat unit does not
exist (not found in NODE queue) then an error message is pro-
duced. Otherwise, the posture of the red and the blue combat
units are updated. The number of red and blue weapons are up-
dated for reinforcements. Note: A blank line must be given for
a side that has no change.

54

ALT IS

s ('r,r'(‘Lt

! PR AR

e

. -,'-,'-_'," S

PN

y ¥

NN

.
-.~
~
.
N
A
S
L
e

O B.2.b(7)(e). Subroutine CHLIM
" Subroutine CHLIM changes the input or output message limit

at a specific node. The message limits are: maximum number of

a6 _s ¥,
a)

input messages that can be received at a particular node during

A

one time increment, maximum number of input messages that can be

b

received or held at a particular node, maximum number of output

x
v

messages that can be sent from a particular node during one time

increment, maximum number of output messages that can be sent or

held at a particular node. Note: Both must be given even if one
does not change.

- B.2.b(7)(f). Subroutine CHLINK

- Subroutine CHLINK changes the maximum capacity of that par-
ticular link type between two specified nodes. The values passed
AN to CHLINK are: clock time change is to be made, unit identifier

3

of node at one end of link, unit identifier of node at other end
of link, link type, and new maximum path capacity.

! B.2.b(7)(g). Subroutine CHNODE

A4
a

9
. iy Not implemented yet.
W :
S B.2.b(8). Block Data FRatio
2 - This routine contains the data used by the force ratio cal-
- culation sub-module. This data includes the names of the weapons
i system types and the engagement rates. There may be three sets
QZ of engagement rates for Red and Blue. Variable Il in COMMON/BLUE
- identifies the index weapon systems and the number of weapon
- :ﬁ systems is set. Then the allocation matrix for a generic unit is
“ set for Red and Blue. Finally, the Red and Blue probability of
e kill matrices is set.
b

35

B.2.c. Events Module

The EVENTS Module contains all of the C3 combat, air opera-
tions, and Time T Input/Output. This section will discuss the
functional subroutines in this module. The utility subroutines
that are used in this module will be described in section C. The
structure of the event processes is shown in Figure 1l.

B.2.c(l). Subroutine EVENTS

The Events Subroutine is an executive routine that controls
the game clock and sequence of events. For each time period, ex-
ternal events are obtained by TInPut and external messages are
obtained by a call to ExtMsg (see Section B). Messages are re-
ceived at command posts, processed, and new messages generated by
the call to NODE. Close air support sorties are allocated,
scheduled, controlled while airborne, landed and rescheduled for
COMBAT. Game time is incremented until the end of game time is

reached when processing is returned to Cc3EVAL. Subroutine Events

checks the user's indicator for time T output data. If this is
requested, Subroutine Output is called at each time interval.

B.2.c(2). C3 Sub-Module

This sub-module represents the command post actions (as
specified by the decision rules) and the communications between
command posts. Communications are represented by data specified
paths between nodes and the capacity of each path to carry mes-
sage traffic based on priorities. Messages can be generated by
user (external) input, by random occurrance based on decision
rule parameters or in response to internal events such as receipt
of a message or the change in a force ratio beyond input limits.
Messsages may be sent, delayed or deleted from the network. Each
path capacity may be modified at any time interval to represent

" 4on - . P » p g - iy ¥ . N
e o D : BA A Sl AN SIS M ' AASOIONY EERCIIANT SCROAON K el RS AFLION,

o e a'esa

bl b 9 v e i An M tan i \y

paissefoun
INEL-G8-L1-01

vy

$3SS9001 JUIAF Y} JO AUMPNNS 1| 23]

UN3S |-

revyrgeraTTLyoy

b AN

1INIT A

1nolLiv

AR S

¢OA1T0H I

57

LOGTOH |-

LVIO01TV

SO1LdH [WITNOW |-

SOISYD | SNLVYLS [S300Ud |-

DSWIVIN [OLVLHd [~ NIOSW [-

dVWN OSHIVIN WITNIN

LVENOD SdOHIVv 3AON DSNLX3 1NdNIL

SL1N3A3

-

T AT T < \:-

N
k
o
A
<
"
Y
N
%
N
e
]
-
y
e
)
e
f\
>,
A
ChOSERAS

NAA

0

direct attacks, E W, etc. Each node has input and output limits
on the number of messages that can be processed during each time
cycle. Designated nodes will maintain perceptions of their
subordinate's capabilities and the opposing forces via messages
received. Allocation of support weapons are based on rules
applied to these perceptions. The communications network will
attempt alternative communications types and routings to send
mesages that may be delayed. The details of message creation,
movement, arrival and destruction are made available in contin-
uous and summary form. All C3 processes are accomplished by
Subroutine Node and the routines that support it.

B.2.c(2)(a). Subroutine NODE

This subroutine has three main sections to model a commmand
post's c3 events. The first section processes the input messages
that are on its input message queue. In this section, each mes-
sage is counted and checked to see if it is addressed to the node
or has been sent to the node to be routed to its final destina-
tion. Rerouted messages are simply moved to the output hold
queue for communication handling. If the destination for the
message is not on the node's destination queue, the misrouted
message is deleted and an indication of this action is put in
standard output. All input messages at each node are reviewed by
subroutine MInLim where input limits are applied. MInLim is also
called after processing to put the messages held due to limit on
the node's input queue for the next time cycle. Subroutine MsgIn
is called to process the messages that meet the limits.

When all incoming messages have been processed, the decision
rules section is entered. This section models all processes that
have been specified by input for this node type. A process may
be periodic or based on reactions to input messages. If it is
periodic and the time for the process is the current time, SUB-
ROUTINE PROCESS is called to generate the output messages. 1If a

58

process is reactive, then the input messages by type, originator
type, and number are checked to see if sufficient current infor-
mation is available to complete the process. If the processs is
able to be completed, then SUBROUTINE PROCESS is called to gener-
ate output messages where rules have been met. After all pro-
cesses have been completed at a node, Subroutine MouLim is called
to limit the number of messages that will be output to the net-
work.

After all processes have been completed for all nodes, the
communications section is entered. This process is modeled by a
series of subroutine calls that review various aspects of alloca-
ting messages to available communications links capacities. The
sequence of subroutine calls for message allocation is shown in
Figure 12. 1In that figure, SUBROUTINE LIMIT is shown after each
allocation routine because it calculates the effects of the two-
way communications limit, while the other routines use the sim-
pler one-way limit. The first acceptable communications link
found is used by each routine. Therefore, to model this complex
process, each destination and link must be checked separately.

In addition, messages may be bumped by higher priority messages
but may have sufficient priority to bump other messages on dif-
ferent destination/link combinations. Therefore, each process is
tried twice. At the end of this sequence, all messages that are
successfully communicated are moved to the receiving node by Sub-
routine Send and process control is returned to SUBROUTINE
Events.

B.2.c(2)(b). Subroutine AloCAS

This routine allocates sorties to requests for CAS. It is
called by AtoAlo which establishes the number of sorties which
can be allocated in accordance with the existing plan and priori-
tizes the requested received. AloCas approves or disapproves the
requests based on the number of sorties specified by AtoAlo.

59

* -
>
Il
T ¥

*PRIMARY DESTINATION

ALOCAT,LIMIT by primary links
*FIRST PASS FOR ALTERNATE LINKS
HOLDQ1,LIMIT lst alternate link
HOLDQ2 ,LIMIT 2nd alternate link
*SECOND PASS FOR ALTERNATE LINKS
HOLDQLl ,LIMIT 1st alternate link
HOLDQ2,LIMIT : 2nd alternate link
*ALTERNATE DESTINATIONS
ALTOUT,LIMIT lst pass, all links
ALTOUT, LIMIT 2nd pass, all links
*FIRST ALTERNATE DESTINATION
HOLDQ1 ,LIMIT lst alternate link
HOLDQ2,LIMIT 2nd alternate link
*SECOND ALTERNATE DESTINATION '
HOLDQ1 ,LIMIT lst alternate link
HOLDQ2 ,LIMIT 2nd alternate link
*RECHECK ALL POSSIBILITIES
ALTOUT,LIMIT
*SEND MESSAGES
SEND

Figure 12: MESSAGE ALLOCATION SEQUENCE

Approved requests are forwarded as messages to the wing opera-
tions center. Disapproval messages are sent to the requestor.
The count of surties approved under the plan is updated.

B.2.c(2). Subroutine Alocat.

This subroutine is used by SUBROUTINE NODE to initate the
allocation of message traffic to the elements of the communica-
tions network. Each message on the future message queue that is
to be sent during the current time slice is moved to the

- v

AP I

o6y a4

i

V%o ®

FIRAN

e e o, -
s f. A

A A A

RS

O

appropriate destination link's hold queue in priority order.

When this is complete, the hold queue is moved to the send queue
and the send queue is checked to see if there is more message
capacity reaquired than the link can carry during the time slice.
Any messages that are over the link's capacity are moved back to
the hold queue. (Note: This is a one-way check. This means
that this part of the allocation algorithm assumes that this node
could use all available communications capacity when in fact,
there is another node at the other end of the link with messages
to send as well. This condition is adjusted in SUBROUTINE LIMIT,
which is called by NODE immediately after ALOCAT is finished.)

B.2.¢c(2)(d). Subroutine AltOut

Allocation of message traffic in a busy network can be an
involved process. The algorithm used by C3EVAL is intended to
model the actions that would take place in a message center. It
follows capacity limits of the network's links and message con-
straints of priority, link types, and acceptable routings. The
number of parameters that are involved are indicated in Figure
13. The message may have 9 possibilities (3 destinations x 3
link types). The node may have several destinations each with
its own set of link types The primary destination and link is
tried by SUBROUTINE ALOCAT. The HOLDQ sub-routines allocate to a
specified destination using either alternate link 1 or 2.
SUBROUTINE ALTOUT allocates by any acceptable link (including the
primary link) to message and node alternate pairs. This is
accomplished by four successive calls to the utility SUBROUTINE
MOVMSG. ALTOUT sets the nodes two way allocation limit flag off
because this limit may be exceeded by its process.

B.2.c(2)(e). Subroutine AtoAlo

AtoAlo is called by Proces for each node that is processing
requests for CAS (message types 2900, 3000, 3400) and has a non-

61

v e
RERE.

()

BN

LR d

‘1

‘2 %
4 ’

e ’
by *y Yy §

"’’’ 'v" 'y t" o

[

4

103

~a

-

]
I

T

\‘
Ly

=

NODE MESSAGE
DEST DEST
PLINK LINK1 ALT1
LINKZ2 ALT2
. LINKP
. LINKAl
. LINKA2
LINKn
ALT1
PLINK LINK1
LINK2
LINKn
ALT2
PLINK LINK1
LINK2
LINKn

Figure 13: PARAMETERS IN COMMUNICATIONS ALLOCATION

null pointer to its allocation parameters queue. AtoAlo pro¥
cesses all pending requests with one call for each message type.
When the first request is received for a unit, AtoAlo creates an
entry in an allocation queue. Any additional requests that are
active for the same unit are consolidated into this entry. After
all appropriate requests have been consolidated, routine PRatio
is called to calculate the processing nodes perceived force
ratios for all the subordinate units.

Then FQueue is called to create a separate set of pointers
in the subordinate's status structure sorted by perceived force
ratios. The allocation parameters are searched for the appro-
priate message type. If it is not found, routine ATOOUT is
called to process the air requests without allocation

62

o

o+

g

w

Ay By

'y

s
'.' *2 2

A0

restrictions. If the allocation parameters are found, the number

of sorties available for allocation as a function of the alloca-
!' cation time period are calculated by a straight line technique oy
and passed to routine ALOCAS for allocation to requests. The 2
Ny ’
% final step is to update the log of sorties allocated. ;
.!- B.2.c(2)(f). Subroutine AtoDel :
o y

Routine Proces calls AtoDel at the completion of each pro-
1 cess to delete all ATO requests and reply blocks that belong to
the process.

T

B.2.c(2)(g). Subroutine AtoOut

This routine is called by Proces and AtoAlo to process re- R
quests for CAS without allocation restrictions that are carried
by message types 2900, 3000 and 3400. AtoOut checks each entry
on the nodes ATO queue to find the ones that match the current
process numbers. Routine MsgOut is called for each acceptable
ATO and the number of sorties approved for the requesting unit is
increased in the node's status block.

Ve

'

"v"_(r"

=
“Z

A AN

-
-

; B.2.c(2)(h). Subroutine AtoRtn

oYY Y WY

e |
he
“.

AtoRtn is called by Proces to pass along in accordance with
the decision rules, notification of receipt of requests for CAS.
}i AtoRtn checks each entry on the node's ATO return queue to find
the ones that match the current process number. Routing for the

I '

- message is obtained from the ATO's return destination list. A -
v message structure is created and filled in accordance with the g
o generic output message format for the rule. Alternate node and t
&? communications data are set for the unique parameters of the node '
o and the message is put on the nodes' send queue or on its future -
kE: message queue based on time to create the message. 13
) K/
S

; .

63

Y. B.2.c(2)(i). Subroutine FQueue
i‘ Routine AToAlo calls FQueue to create a threaded list

through a node's status structure. The order of the list is
e based on the force ratio in each status structure. FQueue first
e sets all pointers in this list to the "unset" value of 5. Then
it traverses the node's status queue to find the maximum force
o ratio in blocks with an unset value. When the maximum is found,

A

it is snapped into the force ratio queue which removes the "un-

oy
12

. set" value. This process is repeated until all status structures

are sorted.

- B.2.c(2)(j). Subroutine HoldQl

EI The communications section of SUBROUTINE NODE uses the
o HOLDQ1 and HOLDQ2 subroutines to move messages from a hold queue
to an alternate communications link if the message has a suffi-
ciently high priority. Each message has the capability of having
. a primary and two alternate communications type links and a pri-
i' mary and two alternate destinations. The alternate links and !
3 their capacities are specified in the "generic messages data =
ﬁi structures" in COMMON/RULE/. This specification is necessary i
' because the acceptable communications type is a function of :
’ message type and the capacity required is a function of link type -
a and message type. Destination type is also a function of message 5;
) type. However, the explicit destination node identify is a func- :&
: tion of the message originating node. Therefore, COMMON/RULE/ x
P contains unit type for destinations and the specific node identi-
< ties are filled in by SUBROUTINE MSGOUT when a message is auto-
. matically created. User input messages are placed directly into
;: the node's input message queue by SUBROUTINE EXTMSG and alternate

links and node data is not used for this type of message.

- e % e e " =" e e P | et a e’ et e .
- - e - - P I - . . - RIS -
e 4+ a e s e m e w A . PR L] Vet et et et Wt e Ta et et - . . - . PR Y Y N
D A R e P @ e, e ty o N R I I i A e

.........
.............

HOLDQl has the function of placing each message on the hold
queue onto a link that matches the type specified as the first
alternate type link. It has the capability of using either the
primary or one of the alternate destinations. This selection of
destinations is made in NODE and passed to HOLDQl by the calling
sequence parameter IPASS. IPASS equal to zero means the primary
destination should be used. When IPASS is equal to 1 or 2, then
the corresponding alternate destination is used. HOLDQl also
bumps all messages of lower priority that exceed the "one way:
link capacity as a result of moving a message to its alternate
communications link. Note that "bumped" messages are returned to
the hold queue for the message's primary destination and primary
link.

The sequence of operations of HOLDQl is as follow:

~ Set allocation flag for this node to off. This flag
indicates that a two-way limit has been completed for
this node. NOLDQl will modify the results of any pre-
vious two-way limiting and therefore this action will
have to be repeated. See SUBROUTINE LIMIT for a de-
scription of this flag's implications.

- Identify the appropriate destination based on IPASS
value.

- Pind nodes link with type equal to alternate link one
of message (if it exists).

- If message priority is higher than a message on the
send queue and capacity exists for this message, then
move message to the appropriate (priority order) position
in the queue.

- Set alternate communications flag to 1.

- Move any lower priority messages on the send queue to
their hold queue if they exceed the "one way" capacity
check.

y -"-""“ PP LR PR
UP R APAI U S0 I B

‘ 'l. "\ ;- "4 "-."v"'.

el

i

e 0 e I)
‘

r”,

\
ég .
o ;
3 B.2.c(2)(k). Subroutine BOLDQ2 E
“ This subroutine operates the same as HOLDQl, except that it
.t uses the message's second alternative communications link for the
re desired communications type. See HOLDQl for description of oper- ;.
~ ation.
g B.2.c(2)(1). Subroutine IntlUp ,‘t
. Routine Proces calls IntlUp when the message type is 3136, E
Ef intelligence update. IntlUp updates a commander's perception of ;
) a subordinate's combat foe. IntlUp checks each entry on the
Eg commander's spot intel queue to find the ones that match the b
B current process number. The perception is updated if the spot :
;: report has data that is later than the current perceptive data. -
by If the spot report is most current, all previous perceptions of
2 foes are deleted and the current report of one or more foes are E
d entered in the commander's status structure. The titles of the h
. foe units are for specific units. The unit type will be used to ;
ii refer to generic unit data for foe unit strengths.
ot
B.2.c(2)(m). Subroutine Limit =
This subroutine is used after each of the allocation o
!! subroutines: ALOCAT, HOLDQl, HOLDQ2, and ALTOUT. 1Its function -
- is to insure the two way limit of a communications link is not -
;j exceeded in the allocation process. LIMIT does this by starting }f
- with the root NODE and checking the link limit for each link for :
- each destination node. 1In order to be efficient when the root
g node and each subsequent node has been processed completely, a ;i
- flag is set to 1 in each destination data structure. When the El
;E key node (the node which will have all of its destinations ;
processed next) starts to process a destination, the allocation A
g: flag indicates that the two way check has already been accom- i
plished with the destination. For example, if the root node is N
Y :
66 ey
o B\
k.'

)
' Y a,
.
)
-

2
T,
o
R number 1 and the next nodes are 2 and 3 in the node gueue, the Y
¢ process starts with 1 as the key node. LIMIT checks each link E
!I between 1 and 2 and sets the allocation flag. Then it processes -
. 1l and 3 and sets that flag. The next step is to make 2 the key i
;3 node. It is not necessary to process 2 to 1 because this was =
done previously. Therefore, in this example the links between 2
g& and 3 would be checked and the process would be finished. -
The capacity check is accomplished in message priority order t
EE by comparing the next message at the key node to the next message %
i at the other end of the link. When the capacity is exceeded by a
b message, all of the remaining messages on both nodes' send queues R
- are moved (in priority order) to the messages' "home" hold queue. <
A The "home" hold queue is the hold queue for the actual destina- §
- tion (not alternate) and on the primary link. The final step is -
. to set the allocation flags in both destinations data structure.
B.2.c(2)(n). Subroutine MakMsg
ii This subroutine creates messages relating to ATOs. This type
- message differs from most message types in that it has an addi- :f
tE tional data structure (ATO) attached to the standard message E5
‘. structure via the pointer PDATA. The message priority is set at ﬁ
f! 1 and the maximum time for each message to be on the network is 3 ;
L s . "
time increments. N
= 5
2 B.2.c(2)(0). Subroutine MDELAY &
55 : Subroutine MDELAY is used by subroutine MOULIM to determine ng
) which messages will be sent, held or deleted. Alternate and E.
5 future messages are ignored. MDELAY receives from MOULIM the i
o5 value of the maximum priority level to be sent (JPl) and the &
. number of messages to be sent from that priority level (JCI). o
Ej MDELAY also receives the value of the minimum priority level to I

be delayed (JP2) and the number of messages not to be deleted

67 > d

LT U e e e T . Tv ey T e S e T e e P T T S W T R PR NS e ST F Y R SRR RS

e v e T e
POCRCR TR LA CR P _.~\-\' A A ST e REVATCI L et T, T e e et e T e T e e e e e e T I R R I

- o\ et e

- - 7 e e - L kb aa -
LA aTLT AT . «- N m . T T T T W W ¥ T a¥Na™. Te Te 2T T T e g™ a®™e. - TN Wy Ve W

from that priority level (JC2). All messages of priority level
less than the value of JPl are sent (a value of 1 being the
highest priority). At the JPl priority level JCl messages will
be sent and the rest will be held. All messages at levels
greater than JPl and less than JP2 will be held. At the JP2
priority level JC2 messages will be held and the rest will be
deleted. All messages above level JP2 will be deleted.

B.2.¢c(2)(p). Subroutine MINLIM

Subroutine MINLIM limits the number of messages that can be
input in one time increment. If there are more input messsages
than can be processed in one time increment then excess input
messages are temporarily moved from the input message queue to
the hold queue. After the messages that are still in the input
message queue have been processed subroutine MINLIM is called
again and the input messages are moved back from the hold queue
to the input message queue so they can be ptocessed next time.
If the maximum number of input messages that can be procesed cuts
off the input message queue in the middle of a priority level
then all messages of that priority level are received.

B.2.c(2)(g). Subroutine Moulim

Subroutine MOULIM limits the generation of output messages
at each node based on the number of messages created to be pro-
cessed at each node and message priority. If there are more
messages than can be output in one time increment then the
appropriate number of messages (starting with the lowest
priority) are either held (delayed one time increment) or
deleted.

B.2.c(2)(r). Subroutine MovMsg

This utility is used by SUBROUTINE ALTOUT to attempt to
allocate messages to alternative destinations. MOVMSG will
68

IR

(8 %

A A

-

. ‘(' -
. , oy
. v 8

-
0

e

.
O]

..I‘.l.,‘ L

2

wif

attempt to move messages in a queue with its root at PMSGO (in a

link structure) and the first message located at PMSG in DM. It
will try the first or second alternate destination in each mes-
sage based on the value of IALT. The unit identified in IUNIT is
checked to see if this is an acceptable alternate for a message.
If it is acceptable, then the links that are available to go to
this destination are checked to see if they are acceptable links
for the message. For a link that is acceptable, the message is
placed on that link if it has sufficient priority over existing
messages already on the send queue and if it does not exceed the
available link capacity. The alternate communications flag is
set in the message to zero for primary link type and 1 or 2 for
alternate link types.

B.2.c(2)(s). Subroutine MsgIn

Each node in the network has the capability to process
messages. The data structure that holds the information about
this procéss is the "output message process." The basic assump-
tion for modeling the processing of messages that have been re-
ceived is that received messages can be grouped together by mes-
sage type and message originator unit type. MSGIN compares the
input message to the message type and originating unit type for
each message processed at the node. When matches are found, the
process' "input message type" substructure, the "input message
list" (IML), is searched for the specific unit identifier. 1If it
is not found, an IML structure is created for the new unit iden-
tifier. 1In either case (existent or previous non-existent IML)
the time the message was created is compared to the time of mes-
sage creation in the IML. If the incoming message is newer, the
message flag is set to 1 and message age is set to 0 in the IML.
In addition, the IML message creation time is updated.

b4 WY,

LA P

T i T
PR

52
2

et
e te v

'\"‘- N "v hd g

1%)

R

y

rols f v’.:'

-y [}
,4.:' LA .I ’l. " .,

h

1
.
.‘.ﬂ

e

e

)
¥ J\J

%

After all processes have been updated by the incoming mes-
sage, it is tested to see if it contains an ATO substructure. If
it does, the ATO is moved to the nodes ATO queue. Finally the
data block containing the message is released to DM for reuse and
control is returned to SUBROUTINE NODE.

B.2.c(2)(t). Subroutine MsgOut

SUBROUTINE PROCESS calls MSGOUT for each instance that a node
has met the requirements to satisfy a message process. The func-
tions performed are a determination of the desired destinations,
alternate destinations, and message structure creation. The data
structure used is Output Message Process (OMP) and its queue of
output messages.

Each output message in the OMP is checked to see if it is
addresssed to the commander of the node or if it is an air re-
quest. If the commander flag in the message is on (=1), the
message is sent to the commander only. If it is not commander
only or an air request, the message is sent to all units (nodes)
that can be communicated with directly (in the DEST queue) that
match the destination unit type found in the 5th word of the
output message.

Next a message data block is located in DM and filled in
with the data in the output message queue. The process for al-
ternate destinations matches the unit types specified in the out-
put message to the designated alternate units for the destina-
tion of the message. Finally, the message is placed on the
node's send queue, by priority, or on its future message queue,
by time to be sent.

MsgOut also has the ability to randomly vary the amount of
communications capacity required to send a message. If option
flag 19 equals 1 message, length will be modified for all mes-
sages of node type "300."

70

) TR

g e o T g) 3=

FE AR,

e e .
34 . .
NI

S

XN

BN 4
AN

vl

B.2.c(2)(u). Subroutine PRatio

Routine AtoAlo calls PRatio to calculate the commanders per-
ceived force ratio for his subordinate units., Each of the eleven
weapon system types for the foe is summarized over each of the
foe units in the foe queue. The numbers of each system type is
based on the generic unit strengths minus the number of foe wea-
pons reported as destroyed in the status structure. The number
of subordinate unit systems is taken from the status structure.
Each weapon system ratio is calculated. The current unit force
ratio for allocation of CAS sorties is the sum of red type one
plus 4 times type 11 divided by the sum of blue type one plus 4
times type 1ll. PRatio also sets the force ratio calculation time
to the current game time.

B.2.c(2)(v). Subroutine Process

Routine Node calls Proces to perform response actions based
on the conditions of process rules having been met. When node
determines that the conditions have been met for a rule number,
Proces bases its actions on the output message types for the
rule. It currently processes message types 2900, 3000, 3400,
7000, 9990, 9993, 3126, 3136 and 3800. Proces checks the first
message type and branches to the related CASE statements. After
each set of CASE statements control branches to increment the
output message type queue. When all output meessage types for
the process have been completed, routine AtoDel is called to de-
lete all additional data structures that were obtained from input
messages under this process number.

B.2.c(2)(w). Subroutine RanMsg

Routine Proces calls RanMsg in respor.se to output message
type 3800, 4800, 5800, 5900, 6800, 7800 and 7900. RanMsg checks
itime to determine if it is the start of the game. If it is,

71

g

‘_x’ s '

A

s NP P
Bttt

TTENTRK WL WLUE VL UV I \‘rﬁ‘\nm‘v.nuw€
", e
E ’
| :
> <
T the node's random message queue is initialized with the processes g
random message using the start time in the generic message at §
!l MSG(15) plus 2 times that number times a uniform random number. n
Each message on the random message queue is checked to see if its g
Eg send time has occurred. If it has, the message is scheduled i
\ again using the same calculation as above and MsgOut is called to E
E create the actual message to be sent. E
EF B.2.c(2)(x). Subroutine Send E
i SEND is the final subroutine in message processsing. It N
takes the contents of each link's send queue for each node and g
moves the entire queue as a complete string to the destination S
- nodes input queue. The resulting sequence on a node's input
‘ queue is by sending node and by priority of the messages within

each sender's segment. Each message sent by the node is counted
and the running summation is stored in the NODE block. Then SUB-
ROUTINE SEND checks each message on each hold queue to see if the

LAV AP

message is overdue. If it is overdue, then that message is de-

.
LA
.
Cy

leted from the network and a notification is printed on output.

B.2.c(2)(y). Subroutine StatUp

N Routine Proces calls StatUp in response to message types .
- 3126 and 3130. These messages are created by routine RptLos at
5 each combat cycle and sent through the network to the commander's
o node (or input from external messages). StatUp gets each data
element from the node's spot report queue, and checks the process

[v ar gy

number in the report. Each applicaktle report with blue data flag
set to 1 is used to update the subordinate's losses and strength
estimates and blue's combat posture. If the blue data flag is
off (equals o), StatUp updates the estimate of red forces des-
troyed.

a"a"aT MR V...

. '.-
]

"

72

Y

"‘f_ L

Y IR RA K ey Y Yy WERY_C Y,

B.2.c(3). Air Operations Sub-module

The air operations module receives requests for CAS from
nodes representing ground unit command posts (usually at the
Corps level) in accordance with user established decisions rules.
The reception of CAS requests and the resulting allocation,
assignment, and scheduling of aircraft to support the requests
are modeled at the wing operations level (WOC). The structure of
air force combat resources starts with a CRC that controls air-
borne CAS for a designated set of ground combat nodes. The air-
craft that the CRC controls come from one or more notional air-
bases that have a direct relationship to the CRC. Each airbase
(WOC) may have one or more types of aircraft that are scheduled
for sorties. A queue exists for each aircraft type at each WOC.
This queue contains the number of aircraft that will be available
for assignment at a specified time. The aircraft combat cycle
starts in the availability queue, includes assignment, takeoff,
reporting into the CRC, enroute to target, combat attrition (in
the suported ground units combat matrix), aircraft survivabil-
ity, return to airbase, turn-around for another mission, and back
into the availability queue.

Requests for CAS are originated by the combat level units
when their force ratios reach a user designated level. They may
also be originated via EXTMSG input to a node. The requests for

CAS are processed through the c3 network and command posts in the
same way all messages are handled with the exception that a com-

mander may approve requests in accordance with an allocation
plan. The WOC is a designated node type that has WOC processing
capabilities and rescurces. Requests for CAS arrive at the NODE
message structure for a WOC in the same way that all messages
arrive at a node (in the NODE's INPUT queue). Notification of
astion on a CAS request is returned in the same manner. This
module consists of four subroutines: AIROPS, MAKMSG, STATUS, and
PRTATO.

73

B.2.c(3). Subroutine AIROPS

u Aircraft resources on the ground at the notional airbase are
) maintained in aircraft type queues as shown in Figure 14. The N
£ first action by this subroutine is to determine the number of e
LY
" aircraft at the current game time. 1In Figure 14, if time is 3, o',:
the program would add 3.93 to the previously available 4.0 '_'
F aircraft and then delete the RDYQ blocks with time 3. This is
. done for all aircraft types (READY BLOCKS). The aircraft j:'.:
i‘; availability status is printed out if requested by user input.
Mission takeoffs are scheduled by starting with the requested _
o Air Tasking Order (ATO) queue in the WOC's NODE structure. The :::
) projected time on target is calculated using alert time and en- 2::'_
o route time and compared to the first request's earliest NN
> '
R r‘
-, f__.v
g)
>
) PREADY | ——p READY BLOCKS 3
’ PREADY .
z A-10 5
- PREADY e
F-4 > >
. PRDYQ
i
= X
L RDYQ BLOCKS «
.b’d . -
1 2 e
5 4.0 3.93 1.97 =
A o
. 1
e
T Figure 14: AIRCRAFT AVAILABILITY STRUCTURE ‘:;
(3
74 .

s g]
3
v .
L4
.
[

- acceptable time on target (TOT). If the aircraft would arrive E'

too soon, processing of air requests is finished for this WOC Ej
‘i during this time frame. (Requests on this queue are sorted in —_

earliest TOT order.) 1If the earliest time is acceptable, then k‘
g; the latest time is checked. If the mission would be too late, :'
” the request is deleted and a message is sent to the requesting 24
N node. If the mission can meet the requested window, processing g
- is continued by checking the availability of the aircraft type E?

requested and the number to be sent. All missions will have a
whole number of aircraft assigned that is not less than the -ﬁ
minimum aircraft limit specified by input. If the number re- -
quested is available, then the request is completely filled. If -
the number available is less than requested, the mission is
scheduled with the reduced number.

If a request is fulfilled, messages to the CRC and request-
ing nodes are created by calling SUBROUTINE MAKMSG and placed on -
the WOC NODE's future message queue. An ATO is placed on the

, .;.‘ '. "'.

.
’

,...
1” O]

i CRC's ATO queue. This queue i5 used to model the mission report-

ing into the CRC after takeoff. After processing all current re-
. quests for the WOC, the remaining aircraft availability status is
K4 printed out. SUBROUTINE AIROPS also processes CRC actions. The
'Y first step is to zero out all of the CAS entries in the combat

ﬂ".‘ ': .'v .'1 A: "n N

matrix for each combat level unit. (Note that this means that A
time on target is always one time cycle.) Then the ATO queue is T
examined for each mission that is on target during this time e
interval. The combat unit's combat matrix is found and CAS is
incremented by the number of aircraft in the mission. Also los-
ses of CAS aircraft due to enemy action are computed. A running
s summation of CAS sorties is also kept. The last step is to

PR
T

calculate the number of aircraft that survive the mission. An
enroute survivability is factored in and the total returning air-
craft is ccmputed. Note that this may produce fractions of an

75

-
b2 -ﬁ-‘

o~
2

’ .:.',i.‘,

-

| XOCK

aircraft. This number is then scheduled for larding and ground
turn-around by entering it in the WOC's RDYQ queue.

B.2.c(3)(b). Subroutine MakMsg

This routine is called by Subroutine AirOps to create mes-
sages type 7000 that notify a combat unit of the time on target
and number of aircraft that have been dispatched for CAS. This
routine is documented in Section 3.2.c.2(n).

B.2.c(3)(c). Subroutine Status

This routine is called by Subroutine AirOps to print the
status of a WOC on file C3DATA.

B.2.c(4). Combat Sub-module

fhis module uses the IDA method of attrition calculation
documented in IDA Paper P-1615, Net Assessment Methodologies and
Critical Data Elements for Strategic and Theater Force Compari-
sons for Total Force Capability Assessment (TFCA), Volume II:
Illustrative Example of Static Measures and Methodology. The
executive routine for the attrition calculation is Subroutine
Map. It is called by Subroutine Combat which interfaces betwen
the C3EVAL processing and data structures and the Map algorithms.
This sub-module generates requests for CAS, determines aircraft
losses during the attack portion of their mission, saves weapon
system losses on file LOSST, and creates spot loss reports.

B.2.c(4)(a). Subroutine CasLos

Routine AirOps calculates the time on target and the time to
return to the ready queue at the WOC for each CAS mission. It
also calculates the enroute losses and schedules the remaining
aircraft for return to duty by putting the returning aircraft on
the WOC's ready queue. Attrition of CAS due to hostile systems

76

::\A
g t
N :
> in the ground support area is calculated by routine Combat. w
Combat calls CasLos to add the additional loses to the mission A
g, a;rcraft. CasLos searches the WOC's ready queue for the first @5
) mission with return to ready time that is the same as the air- %:
ﬁ craft returning from combat and subtracts the combat losses from ‘::
the number of aircraft to be available. ‘a
)
55 B.2.c(4)(b). Subroutine Combat g}
& This routine is the executive for determining combat attri- E‘
d tion. Combat interactions are evaluated each time increment for 2
o each unit that is a combat type unit that is not in combat status Py
o equal 0 (i.e., in reserve). Combat system and posture data is a:
. extracted from a node's combat structure for both Blue and the ﬂf
;; opposing Red force. The allocation matrices and force ratios are
calculated by Subroutine Map. The combat drawdown is calculated e
Zf by the matrix multiplication of the number of systems times the Zf
) opposing sides Qmatrix created by Map. The results of the draw- ;i
ii down are stored in the node's combat structure and losses are =
output to file LOSST if the user has requested this data. File K
o LOSST is used by the post processor to generate weapon system fi
~ loss graphics. Subroutine Combat compares the current force %2
ratio to the input threshhold level and creates a request message o
N for CAS if the ratio is too high and earlier requests are not ﬁ.
. pending. If the user requested it, the results of each combat ;4
;ﬁ engagement is printed on file c3pATA. If the user has indicated é‘
random-processes are desired, Combat will randomly modify the e
fﬁ times that requests for CAS are sent. Subroutine Combat calls s
RptLos to generate spot loss reports to his commander. ;j
“ B.2.c(4)(c). Subroutine MakMsg D
- Subroutine Combat calls MakMsg to create messages to request :3
. CAS support. This routine is documented in Section B.2.c(2)(n). iﬁ
: A
" 77
3
- N?
N

| jed

°r

33
[
%
B.2.c(4)(d). Subroutine Map ;:
'\
"

This routine is the executive for calculation of force

ratios, weapon system allocations and the Q combat matrix. This

o1

. . . . 3]

q routine and its subordinates are documented as noted in (4) : E’:

; o

" \]
20 above. X
)

B.2.c(4)(e). Subroutine RptLos i

This routine is called by Combat for each unit after combat é%'
j attrition is calculated. It creates two combat spot loss re- Q}
- ports, hessage number 3130 for Blue and 3126 for Red losses. '
53 These reports are sent to the unit's commander and forms the rf
~ basis for the commander's perceptions of the unit's status. The Ei
Fﬁ actual losses are reported unless the random process flag is on. ;E
Under random operations, the messages are randomly delayed and -
. the contents of the messages are randomly modified. E;
: R
. B.2.d. Output Module ﬁi
ii Output by C3EVAL is provided in four different areas; input ;
- echo, game events, summary and time T. Input data is echoed to ;g,
N file C3ECHO to assist in creating a complete record of the scen- I;”
i ario and to verify that the data structures created during ini- :$:
!! tialization are properly filled. Subroutine Input echos the data)
a preamble, control flags, node data set, link data set, and limits ?}
f} data set. Subroutine Inputs echos combat unit strengths. Sub- 35
N routine Inputa echos CAS allocation parameters, CRC parameters E:‘
6 and available aircraft. Subroutine RulPrt prints out the deci- -
. sion rules in node type (echelon) order. 53
- Game events are printed to file C3TIME. Subroutine StatOn ?E
e prints out the commander's initial perceptions of his subordi- ol
- nates. TimeT input of reinforcements, combat status and link oo
;Q capacity changes are printed out by routines under TinPut. itf
‘ ExtMsg echos the user's input messages as they occur. The ;Ei
Y
] 78 oo
% e
-~ t Wy
e

- .
P
.

et et et et e W e e e e et T e T N T e e e e et e e CREAGR
._,_’.-_’.'..',-{..,.‘_‘..J. R M N I I SRy \.. T N I N 37 S O S S A

L

printout of message flows, queue status, combat losses and
scheduling of CAS is controlled by user flags set by routine
Contrl. If the debug flag is set, a large volume of physical
as well as logical data is printed on file C3DATA.

At the end of the game, a summary of communications, network
and support sorties are printed to file c3suM. This is followed
by the size of dynamic memory actually used and the commander's
perceptions at game end.

The fourth area of output is created for use by the graphic
post processor. The message flow data at each time interval may
be printed to file TIMET and the combat losses data printed to
file LOSST. -

B.2.d(l). Subroutine OutPut

Subroutine Events calls OutPut if the user has requested
time-T data to be saved, PFLAG(l4), for the post processor.
Events set the output file, IOUT to TIMET calls OutPut, and then
resets IOUT to C3DATA afterward. The main program C3EVAL calls
OutPut at the end of the game with IOUT set to C3SUM. OutPut
creates the printout shown in Figure 15.

B.2.d(2). Subroutine PMSGl

This routine prints out data about messages at alternate
destinations and on a node's input and future message queues. It
may print all messages, all messages at a specified node, and/or
during a specified time frame. It may be restricted to only
those messages that have their track flag set.

B.2.d(3). Subroutine PMSG2

This routine processes the same as PMSGl except that it is
done for a node's output and hold queues.

79

-

-

oo ala g we W
5y e

o v.v
-

“ -y q “"ﬁ

'.._,‘
.
R ALAL

L

r' ’ol "-"

“»

| O

TN

224

h

J &

SUMMARY OUTPUT AT TIME 48

ol ol Lt
P30T I I 2D B By

UNIT
SHAPE
AFCENT/AAFC
VII CORPS
VII CORP TA
CENTAG
V CORP REAR
V CORPS TAC
52 MECH
woC
ATOC
4ATAF
23 ARM DIV
V CORPS
20 MECH
201 ACR

-._.‘.“--‘.- -'J'...‘ \..'.-...;_. " .

NN AN

NUMBER
18
17

16
15
14
13
12
9
8
7
[}
4
3
2
1

Figure 15:

COMMUNICATIONS LIMIT
IN OUT HOLD KILL

TYPE
700
600
400
450
500
499
450

7000

g

355588

43
185
7
28
94
43
437
78
13
108
249
93
173
57
23

13
134
2

5
54
24
69
273
105
224
173
174
102
169
14

N
OOPINOPIODLDOOOOOO®

SOV NUOOOD—+O

INPUT LIMIT
IN HOLD KILL

43
185
7
28
94
43
437
58
13
108
249
62
120
57
18

N
XXX X X.-R.-K.-N-R.-N. X N. ¥ N J

-
X KR XX N -X-X. R X. X N.-N-N.J

CAniie i Sl Sl A/ il i st o b ke i

OUTPUT LIMIT
OUT HOLD KILL CAS HELO

13
135
2

5
54
24
72
274
105
224
173
177
49
169

SUMMARY OUTPUT AT TIME

80

(4]
(X XN R-X-X-X.-R-X.-N.- XXX

»~
X ¥ -RSE.-N.-X. X N N N.N.¥.-N.X.J

SORTIES

n
XX R -N.-¥.-¥. ¥ N -¥.-N N XN J

137

-

-
e

,..
.

XA

AN

&>

L]

4
el

r

B.2.d(4). Subroutine RulOut

Routine Events calls RulOut if PFLAG(7) is set. The main
program C3EVAL calls RulOut if PFLAG(l7) is set. RulOut prints .
out the decision rule parameters and variables in physical struc-
ture form so that the details of their operation can be followed.
If the debug flag is on RulOut will call PMsgl and PMsg2.

B.2.d(5). Subroutine RulPrt

The main program C3EVAL calls RulPrt to echo the decision
rules to file C3ECHO. RulPrt loops through each decision rule
for each level unit specified in its internal data statement. If
new unit types are added to the scenario, the unit type must be
added to this data statement to have its rules echoed to the
file. The decision rules are printed in unit type order with the
rule process parameters followed by the required message-in data
and then the output messages to be generated by the rule.

3.2.d4(6). Subroutine StatOu

Routine Events calls StatOu at the start of event processing
to print the commander's initial perceptions of his subordinates.
The main program C3EVAL calls StatOu at the end of the game to
print the commander's perceptions at the end. StatOu checks all
nodes to determine if their status queue exists. If it does, the
integer value of blue and red curent perceived forces and losses
are printed. Blue data and red losses come directly from the
status structure. Red perceived weapon system numbers are ob-
tained by adding the values for each foe perceived from the gen-
eric tables and subtracting the losses reported in the status
structure. The perceived combat posture is also printed.

81l

LAY |

Sei) (EEARX

o
-

s
c e,

-
w .

TG, T
A ! '

,‘-"-,"."-'., ‘f.’

T
v i

AP

-'"—v

P A

3.2.4(7).

Graphics Data

Summary data is printed by subroutine Output. 1If the user

! has indicated graphics post processor data is desired, routine R
: b Events calls Output at each time interval. This data is written :
K} in character format to file TIMET. The post processsor reads '
this data to create some of its graphic output options. 1In
) !i addition, if the graphics data flag is on, routine Combat writes

;:) the comat losses and force ratio for each node in combat. This
data is written in binary form to file LOSST. The post processor
also reads this file.

B.2.d4(8). Subroutine VMData

“ This routine prints out the maximum dynamic memory location
- used and the status of the reusable block queues.

-
‘@ B.2.e. Utilities }

W B T T T,V

These routines perform data structure building, searches,
dynamic memory operations, and other program support-type

v

functions.

B.2.3(1). Subroutine Find

: SUBROUTINE FIND searches the elements of a queue for an in-

) put calling sequence integer value (ID). The starting point in

. the queue is PIN. FIND assumes that the pointer to the next ele-
ment in the queue is the first value in an element and that the

last element in the queue will have this value set to zero. The

offset from the first value of an element that contains the de- :
- sired value is indicated by the parameter N. If the value is not
A found, the output parament POUT will be set to zero.

...........
...............
o et

....................................
.................................

3

0*4

[(N

B.2.e(2). Subroutine Gimme

GIMME provides a DM data block of length LEN from the memory
space ISPACE. 1In the current version of C3EVAL(there is only
one dynamic memory area (MEMORY). The location of the first word
in the data block is set into NPTR. GIMME first searches its
garbage list to see if a block of equal length is available for
reuse. If not, it creates a new block of the desired length by
increasing next unused space pointer ISPTR by the value of LEN.
GIMME also checks to insure that the current maximum size for DM
is not exceeded.

B.2.e(3). Subroutine POut

This routine is used for debug purposes only. It produces a
snapshot of part of dynamic memory. The snapshot starts on loca-
tion one and prints the specified number of variables (up to
eleven) per line and the specified number of lines. Note that
C3EVAL does not use locations 1-100 and this area should be all
zeros.

B.2.e{(4). Subroutine Releas

This routine works in conjunction with Gimme to control
dynamic memory. It places data blocks on the reusable memory
queue. The block address is placed on a queue of blocks that
have the same length as the input parameter to Releas. The queue
has its root in variable IGBPTR. Note that there is no garbage
collection accomplished.

B.2.e(5). Subroutine Restor

Restore is used to restart a game at time T other than zero.
It assumes that a previous run has been made and that the status
of dynamic memory and COMMON parameters were saved by routine
Save. This capability has not been enhanced to operate with the

83

L A
-

Y X,

Pl o YA

-

LN

oy

current version of C3EVAL and will not operate correctly until it
has the ability to handle the time T input files created in the
current version.

B.2.e(6). Subroutine Save

This subroutine saves the status of DM and model parameters.
This data may be used to restart the game at the point where
SUBROUTINE SAVE was called. Due to enhancements made to provide
addditional time T inputs, this subroutine requires enhancement
before it can be used with the current version.

B.2.e(7). Subroutine SNAP

SUBROUTINE SNAP finds the correct position in a queue with
root in parameter PTR to insert a new member located at PIN. The
sequence variable is located at NWORD in the data structures.

B.2.f. Data Structures

There are two distinctly different approaches to data struc-
tures used in C3EVAL. The use of FORTRAN common variables and
arrays is described first. The next section defines the approach
used to provide essentially dimensionless code and the linked
list data blocks that are used to implement the required data
structures.

B.2.f(1). Common Data Structures

The following nine named common data structures are used in
C3EVAL. This implementation is standard FORTRAN, with the excep-
tion of variables that start with "P" which are declared implicit
integer variables. They are normally used to represent pointer
(locators) of linked list data blocks in Cc3EVAL's dynamic memory.

84

A &S YT

s T S

R I T v P .

:-",P(I'-’

. e -
'y %y %y %y v

s,
]

v
.
.

Dl N
‘.

:{ {(a.) COMMON/C3/NODE1l,PGOMT,NCRC,INP, IOUT,NREDTE, IRAND ik
)
< NODE1l Location of first node data structure in DM
. . PGOMT Not currently used
i . NCRC Location of first CRC data structure in
RO Dynamic Memory
T INP Input file number of for €3 data, set to 1 '
. in PROGRAM C3EVAL
o I0UT Output file number of all output, set to 6,7
‘ and 8 in PROGRAM C3EVAL and 14 in Events
NREDTE Location of first generic red unit table of
equipment
IRAND Seed for random number generator set to

731593 in Block Data FRatio

The node data block is the basic building block for all c3
and combat data. The descriptions of the node, CRC and red gen- ?

eric data blocks are in Section (2). '

N z (b.) COMMON/SPACE/NOUSE,MEMORY (20000). K
N NOUSE A check variable used for debug purposes 3
S only. (It is MEMORY location zero). ;
| . MEMORY DM array. It is equivalenced to STORE to
- facilitate its use for floating point as :
- well as integer values. y
. (c.) COMMON/LOCATE/ISPTR,IGBPTR,MAXSP. N
\

F ISPTR Location .
. IGBPTR Root of the linked list of reusable data .
MR blocks in DM -
S MAXSP Maximum value for ISPTR :
- (d.) COMMON/TIME/ITIME,INCTIM,LASTT,PDl,PD2 ;
. ITIME Current game time, number of INCTIM N
. L intervals that have been simulated. ~

- INCTIM Basic time interval of model, set to 1 in A

) C3EVAL meaning one 30-minute period. !

;: LASTT Last time for this simulation run (for 24 &

. hours of combat LASTT=48). i
. o

[

85

‘4

.
'q
2
.i
i

.
>\
.
.
I.'
!.‘
-
|

ﬁz PD1 Start time for debug print (if PDEBUG=0)
) PD2 Stop time for debug print
e, i (e.) COMMON/RED/and COMMON/BLUE/.
e COMMON/RED/ NR(11l),ALTCRB(11,11),ER(1l1l),VALR(1l1l),
p; 1l PKRB(11l,11),NTCR(11),QR(11,11),ALLRB(11,11),
~ 2 NTRJ,WGTR(11l),WR(11)
k- COMMON/BLUE/NB(11) ,ALTCBR(11,11),EB(1l1l),VALB(11l),
s 1 PKBR(11,11),NTCB(11),QB(11,11),ALLBR(11,11)
- 2 NTBI,WGTB(1l1l),WB(1l1l),Il

With the exception of Il in COMMON/BLUE/ these two commons
are identical in definition for Red and Blue forces. The Blue
definitions will be given here.

S NB Number of weapons by type
:: ALTCBR Typical allocation of Blue weapons against
R Red
! - EB Engagement rate for each Blue weapon system
S tions
. VALB Interface variable for other APP calcula-
; i tions
i PKBR Probability that a Blue system kills a Red
system
NTCB Typical number of Blue weapons assigned
QB Kill rate matrix of Blue against Red
E; ALLBR Allocation matrix of Blue against Red
NTBI Number of types of weapons, set to 11
‘ i Il Index weapon system
A WGTB,WB Interface variables for other APP calcula-
' tions

(£.) COMMON/EIGEN/EIGR(11l),EIGB(1l1),V(1l),BETA,RAT4

EIGR Force ratio eigen vector for Red
;3 -EIGB Force ratio eigen vector fcr Blue
: \' Initial guess vector for eigen solution
} BETA 1l/lamda of eigen matrix
RAT4 Force ratio Red to Blue
R
{4 86

AD-A168 973 C3 EVAL MODEL DEVELOPHENT AND TEST VOLUME 2 PROGRAMMERS 2/3
MANUAL. . (U) INSTITUTE FOR DEFENSE ANALYSES ALEXANDRIA
YA R F ROBINSON ET AL. OCT 83 IDR-P-1882-VOL-2

UNCLASSIFIED IDA/HQ-85-30396 MDRIS3I-84-C-9031 F/G 9/2 NL

P"':'.",b'*%’sm“‘”ﬁ'ﬂ.'"f“‘r-"".«""m"»’.’w“;.’«‘;‘»’":!,"» R Ao

ot
o

o

==
N
~N

I

FPEEEER

EEE

rr
r
(44
=
5
o

o

——

N
o
o

 ema—
—
——
—
——

I

-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -1963 - A

.w > .5.' PR LIRS ‘..-‘.-“- PPN
',:..: “pe e e e, '_.‘_- -

.«
-

g

“s
LRV B R

u_‘,’“.’_ K

Lo

(g.) COMMON/ENGMT/ERP(3,11),EBP(3,11),POSR,POSB,LCMBT,

FRBCAS.
ERP Engagement rate for Red
EBP Engagement rate for Blue
POSR Combat posture for Red
POSB Combat posture for Blue
LCMBT Unit type identification of combat units
FRBCAS Force ratio Red to Blue limit for CAS re-
quests

(h.) COMMON/NAMES/NAMER(11),NAMEB(1l1l).

NAMER Names of Red combat systems
NAMEB Names of Blue combat systems

(i.) COMMON/PRTFLG/PFLAG(20),PMOD(3),PDEBUG

PFLAG Array of user control flags, see Figure 8.

PMOD(1) Message printout for this node only, if
zero do all nodes.

PMOD(2) Output start time

PMOD(3) Output stop time

PDEBUG Debug print flag, if 1 debugger is on

B.2.f(2) Dynamic Data Structure (DDS)

There are three sets of DDS in C3EVAL. They are the NODE,
CRC and GENERIC sets. A set has its root in a non-dynamic loca-
tion and is linked together by pointers. As shown in Figures 16,
17, and 18, the root locations are variables NODE, NCRC and
NREDTE in COMMON/C3/. These structures are created during input
by calls to SUBROUTINE GIMME which acquires data blocks from
dynamic memory. The length of each type data block is a fixed
number in the code. This section lists the data blocks, defines
their elements, gives the type of each variable, identifies the
routine that creates the block and the ones that delete the block
if applicable, and specifies the location of the root.

87

PR
s

oat A

%,

L R

o
-

>

A A

A
0y

TN N s

y & '

AR AR

.4

o s 0 04

LR
L
=

-~ - LA el Ml A AL R AR A A A DA A S Rl il v b 24 - b ‘xl » r
- 2
COMMON/C 3 /NODE 1 z‘.;

‘ . | \ \]
:::yons r—' DEST ‘ LINK ‘ MSG r— DATA 3
“Meeans PLINK — L i
PNODE ™[EoEsT r’ PLINK *{emsa r* ;
PDEST | PLINK PHOLD PDATA >

. POMP PALT2 ' 5 1
*{rima ' A
~||PFMQ oMp ¢ . A)
< | |PRMSG ——— NODE MSG £ DATA k;'
*||PCcMDR POMP ‘ A
PCMBT PIMT —> PMSG f—’ :
" PAOPS POUT — PDATA -
w'||pATO | i o)
PDATA }— MSG ; :
~ . PATR m | ; | IML ; ‘ :\-

| [PSTAT H —»{ PMsG pald — -
“llpFRQ@ - :
PSPOT | || ¥ Piur %] PimL "

s YPALLoC , [| | i

4 CMBT <
] . A
- > NODE s
i -
b ato ¢ | -
. -
. t———¥1 PATO .

] |

. COUNT l‘
N o

== —— W

[y

& 11
ATR ¢ |

| — Q

N | PATR 5
- STATUS § FOE ¢ | GENERICY | :7:
] [
L p{PSTATUS PFOE PREDTE g
PFOE PGRED > "

i o= | —> L o
= SPOT ¢ N
" ——reror H 3
10-17-85-10M N

- Unclassified =3

AlLLoc ¥ .

~——®IPaLLOC

| Figure 16. NODE Dynamic Linking :i

88

........ e e e e e e
e T S T T N N N e e e e e e T e T e et
e . . - anL e e PN O R A PR A e g e st taTe"e o,
VIR W A R N feC . A A I AR A .

4, gkt A Bat L _pLt _pat B at gt Gt * ¢ 8a3 Y 7 T [3 "
.

i o
=

N 3 | 5,
~ COMMOM/C °/NCRC RS
CRC woce £ READY RDYQ £ gt

i —— '——£ =
= PCRC] PWOC PREADY PRDYQ 3
N PWOC PREADY] PRDYQ)
E PNODE H PNODE :
N jd = ll'-
"

" NODE
:'l- :,p
<4v-— NX

X Figure 17: DYNAMIC DATA LINKING o
.{ ,..
. -
%
" COMMON/C 3 /NREDTE L
GENERIC t
0 | >
< ;.
‘.-
. | .
i PREDTE .
E | 3
"~
.i.;f -
Figure 18: GENERIC RED UNIT TABLES OF EQUIPMENT -
e DYNAMIC DATA LINKING .
- .
89 :

e

v
o
.

The symbols used in the DDS's documented in this section are:

SYMBOL TYPE OF ELEMENT

P Pointer to another DDS
I Integer value

R Real value

Cc Character

The DDS is traversed by the links shown in Figures 16-18.
While each node is of a fixed length, the number of DDSs in a
single queue is unlimited. Therefore, one node may have only one

destination while another may have several.

When a specific data element is desired, the program code
uses successive pointers to locate that element.
Example: Find the capacity of communication link
type 16 that connects node 3 to node 4.
1) Pind node 3 by starting at COMMON/C3/NODE1. This is
done in code by setting PNODE=NODEl. This is a location in DM,
From the NODE DDS below, we see that location PNODE contains a
pointer to the next NODE structure and that location PNODE+1l
contains the unit identifier. This identifier is compared to the
node number desired (3). If this is not the desired NODE, then
PNODE is reset to MEMORY(PNODE), which is the location of the
next node structure. This series is repeated until the desired
NODE is found. (This can be done by SUBROUTINE FIND.)

2) From the NODE DDS we see that PNODE+3 is a pointer to a
communications destination queue. (The offset PNODE+3 is always
one less than the number in the attachment, because PNODE is the
location of the first element in the DDS.) The DEST (destina-
tion) structure is traversed to find unit identifier 4 in the
same manner that was used in step 1.

90

I3

' ~
7, I“’"I‘"‘l"v "'.
5. 'l 'l " .. 4

é; W

Ny
;.o'.

SR
M .

E:'j 3) The DEST DDS contains a pointer to its communications
links. These links are traversed until a LINK DDS with type 16
is found.

-

4) The capacity of this link is located at PLINK+2.

L} ,2
."’l-

i

L
D).
[i ".]
N
LN Pt
- e
w e
UCH * o
>.\ “_
e
. R
s o
.
- *
==
2 ~
= N,
"
. ..
- -
X !
. v,
‘N .ﬂ. A,
'.‘- -*\
jAs ALY
3

Py [
-~ é\

LR

-‘ Q. -
v..' -
. \"-
.)-\

- .

- ': o2
R

3

. ~
D' P .p'
¥ N

v

. .

91

Pl ol

o'
, N
=
-~
o

L]
»

BLOCK NAME: ALLOC

USE: This structure contains the allocation para-
meters for a commanding unit to use in
approving requests for CAS by its
subordinates.

CREATEDBY: INPUTA
DELETED BY: N/A

NODE(21) DATE:

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PALLOC Pointer to next allocation structure

P
2 TYPE I Type of allocation data (3000,3400)
3 SAT I Start allocation time
4 NAT I -Number of allocation time periods
5 NSOR I Number of sorties allocated
6 MINSOR I Minimum sorties on a mission
7 I Maximum sorties to be allocated

R S b A et At e A gl Shats S Be et Sty [t A Al AR S S S AL B AU i O W e b 4 RS0 e DAn S s gy $ig 4
[l

BLOCK NAME: ATO

USE:

Contains the data portion of a request for
CAS or the response to a CAS request.

CREATEDBY: MSGOUT

DELETEDBY: SEND
PMSG(18)

ROOT:

INDEX

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PATO Next air task order

ID Support unit number

ETIME Earliest support time OR takeoff time
LTIME Latest support time OR on target time
ACTYPE Type of aircraft

93

USE:

DELETED BY:

BLOCK NAME: CMBT

The combat data structure contains the
combat weapon systems data for each

combat level unit.

INPUTC

not applicable

NODE (9)

BLOCK SIZE: 62

DATE:

ELEMENT
NAME

TYPE

ELEMENT

MEANING/USE

RTINS
hAltaladal o -

.- .

W hWwN

6-16

17-27

28-39
39-49
50-60

CFLAG I

RATR
RATR
RAT4
BETA

NB

NR

EIGB
EIGR

A AR ARX

AR x

=0 no combat, =n > O n is period of combat,
=m >0 m is period of force ratio calculation

Blue ratio
Red ratio
Force ratio Reb/Blue

Eigen value of 1/lamda
Number of Blue weapons

Number of Red weapons

Eigen vector Blue
Eigen vector Red

Eigen best initial guess

Posture of Blue:

=0 not in combat, =1 Low,

=2 Medium

Posture of Red:
=0 not in combat,
=2 medium

= 3 High Intensity

=] Low,
= High Intensity

‘.

BLOCKNAME: COUNT

USE: This structure contains the message
counters, limits and other parameters held
for output at each node.

INPUT
DELETEDBY: N/A

NODE (12) DATE:

ELEMENT TYPE ELEMENT
NAME MEANING/USE

BLOCK SIZE: 30

1 CIN I Number messages arrive on network

2 cour I Number messages sent out on network
3 CHOLD I Number messages held by comm. limit
4 CKILL I Input limit to hold messages

5 LINH I Input limit to hold messages

6 LINK I Input limit to kill messages

7 IIN I Number messages arrive thru limit

8 [HOLD I Number messages held by input limit

9 IKILL I Number messages killed by input limit
10 LOUH I Output limit to hold messages

11 LOUK I Output limit to kill messages

12 OIN I Number messages sent out thru limit
13 OHOLD I Number messages held by output limit
14 OKILL I Number messages killed by output limit

Number CAS sorties in combat

Number helicopter sorties in combat

L AT '
..'n,:. -3 " a,{l.'.‘,

R

‘." o

CRC

BLOCK SIZE: 5

Contains the parameters for a combat
reporting center and the relationship to its
node structure and wing operations support

unit.

INPUT

not applicable
/C3/NCRC

DATE:

ELEMENT TYPE
NAME

ELEMENT
MEANING/USE

PCRC

ID
TYPE

Next CRC
Unit number of CRC

Unit type of CRC

Pointer, CRC's node structure

Pointer, wing ops structure

" Lol A A AR AR o - A e AR el NS B8 ahe Al a4
Ry

DEST

This structure contains all of the other
nodes which can be communicated with by
the node to which it is attached.

INPUT

N/A
NODE(4) DATE:

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PDEST Pointer to next destination element
ID Destination unit identifier

PLINK Pointer to communications queue
PALTI Pointer to first alternate

PALT2 Pointer to second alternate

TYPE Destination unit type

Allocation flag, =1 allocated
Internal flag

Subordinate flag =1 subordinate

O 00 ~J N W b W N =

BLOCK NAME: FOE
USE:

B T T rrrrem

BLOCK SIZE: 7

Identifies specific red unit as foe of a
subordinate and points to the generic red
unit table of equipment (TE).

STATIN, INTLUP
INTLUP
STATUS(27) DATE:

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PREDTE Pointer to next FOE structure

UTYPE
UNITID
PGRED

TIME Time of unit identification

Type of red unit
Red unit name
Pointer to generic FOE

=
." l" J’

¥
v
."

(PN

v

'5"""
¢

1

s
s

va
))

I NN

oo

el

o
R
(RS

DRI,
.® .
Cu et

c..
-
. !
—_———
K
et
S
.
-«
~
LI

GENERIC BLOCK SIZE: 15

Structure for table of equipment for a
generic Red unit.

INPUTC
N/A
/C3/NREDTE

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PREDTE Pointer to next generic red TE
UTYPE Type of Red unit

Number of combat weapon systems

Combat posture

BLOCKNAME: IML
iy USE: The input message list contains the
g;.ﬁ variables that indicate specific message
receipt from a designated usit (NODE).

p MSGIN

not applicable
(- : IMT (4) DATE:
b ELEMENT | TYPE ELEMENT

NAME MEANING/USE

e

PIML Next input message list
& Unit identifier of originator
Flag, message was received
e
led

Age of last input message

Time last input was originated

-

L] , .‘.

A

[A
(]

A~
s ‘s

iy *

b

R

L4

I
,{._,_.
. rr
[“a
. rsu N
val
f.

e
-'b‘
.'.‘-
PR Y
e
Y
e
..'l.
LR
Al

.

a'{

e "3
N D
¢ v ®
> .

RDAS
.y NN
Iy RSAY
d %
_ "
o '{: .
| 4.‘. T ™
e 100 E

............

S YU P B RS R S
L!, [N A Y 'n.‘-.-':“‘:..F_A"_. {A".l.').. NS '-"c-'.l: N

a3

v
AR

USE:

BLOCK NAME: IMT

The input message type structure contains
the parameters required to process a specific
input mesage type that originated at a specific
unit type. Each IMT has an IML queue.

RULEIN
not applicable

CREATED BY:
DELETED BY:

OMP(3)

DATE:

ELEMENT
NAME

TYPE

ELEMENT
MEANING/USE

A s W N -

PIMT
MSG
OTYPE

PIML
MAXAGE

Next input message type

Type of input message

Type unit that originates message
Input message list

Maximum age of useful message

Message use if 0 only once

INTEL REPORT

Structure for foe identification message
type 3136.

INTLUP

ATODEL, INTLUP

MSG(18)

DATE:

ELEMENT
NAME

TYPE

ELEMENT
MEANING/USE

PDATA
ORIG
TIME
TYPE

NAME
PINTEL

Pointer to next data report

Node identifier of Blue combat unit
Time report data was created

Type of foe unit

Posture of foe unit
Name of specific unit

Pointer to next INTEL report
Unused

Input process number
Unused

102

- : K T, olinas
PR T (T e W W W N oo e o MMANL A S\ i e e e it aP & el gt L R A S S L Al Il Rt A d Aok ad e ey

.....

! BLOCK NAME: LINK BLOCK SIZE: 6

USE: This structure contains the parameters for
a link between the node and the destination
in the root DEST structure.

-
vl

INPUT
F- N/A
DEST(3) DATE:
iﬁ: ELEMENT ELEMENT
NAME MEANING/USE
s
o PLINK Pointer to next link element
2 LTYPE Type of link
v LCAP Capacity of link
= Pointer to message send queue
Pointer to message hold queue
i Temporary queue for allocation
[
"
-

N

» e
e

v

103

F o 2o
[}
- e

USE:

ROOT:

BLOCK NAME: MSG
Basic message structure for all messages.

CREATED BY:

DELETEDBY: MDELAY, MINLIM, MSGIN, NODE, SEND,
gglll))E&G)), (7), (23); LINK@), (5); IMT (4), DATE:

ATORTN, EXTMSG, MAXMSG, MSGOUT,
RULEIN,

BLOCK SIZE: 21

INDEX

ELEMENT
NAME

TYPE

ELEMENT
MEANING/USE

O 00 2 O b W~

PMSG

STIME
MTYPE

GTYPE
DEST1
PRIOR
LTYPE1
CAP2
LTYPE2

Pointer to next message element
Time to send messages

Type of message

Originator of message
Destination uniut identifier
Priority of message

Primary path type

Capacity required on path 1
First alterate path type
Capacity required on path 2
Last alternate type

Capacity requried on path 3
Alternate unit type

=1 destination is commander only
Output flag

Alternate transmission flag
Alternate unit type

Pointer to additional data

Unit identifier of originator
Time message was created
Maximum time to be on the network

NODE BLOCK SIZE:

This structure is the top element for each
node in the game. It is used to locate the
functional structures that contain the node's
characteristics.

CREATED BY: INPUT
DELETED BY: N/A

ROOT:

/C3/NODE1 DATE:

23

INDEX

ELEMENT TYPE ELEMENT
NAME MEANING/USE

1
2
3
4
5
6
7
8
9

Pointer to next node

Unit identifier number

Unit type

Pointer to destination queue
Pointer to output message process
Pointer to input message queue
Pointer to future message queue
Pointer to commander

Pointer to combat data structure
Pointer to assigned air support
Pointer to air requests

Pointer to counters for output
Unit name

Pointer to acknowledged requests
Pointer to requested fire support
Pointer to approved fire support
Pointer to subordinate status queue
Pointer to spot report queue
Pointer to allocation parameters
Pointer to force ratio queue

PNODE

ID
TYPE

POMP
PFMQ

PCMDR
PCMBT

w =~ v YwYY YT AYYYYY YU YUY -

Pointer to random message queue

105

b,

Ay By 2 0 0,
F AT -

PN NN

L

XA
o :

&7 R

v

'y 'y
¢

g
¢

.,
4 *, e’
AN

e e '
B)
E; N
! N
N :z"‘
! OMP BLOCK SIZE: 11 —
The output message process structure con- o |
tains the parameters for message handling. Ny
E: Each OMP has an IMT queue and a MSG ".‘,::Z
queue. e
RULEIN ~
g not applicable N
. NODE(S) DATE: R
3 ELEMENT | TYPE ELEMENT R
NAME MEANING/USE -
£ 5
v 1 POMP P Next output message type {—_ﬁj
& 2 RNO I Rule number R
d 3 PIMT P Input message type queue =
£ 4 POUT P Output message queue j:Z:jE
2 5 LTIME I Last time this process complete o
2 6 OTYPE I Type unit that originated process
i 7 CTIME I Time to complete process
- 8 MFLAG I > 0 minimum current messages to do this process y
r 9 TFLAG I =0 not period s
F > 0 period interval o
b P Data element for action e
TN
i Start time of periodic process j'c::'f
- '
s i
ray b Y0
i i
& B
. s
N A
106)
o
N -

&
- e
g\: Y
N it
O NS
Lol
o

BLOCK NAME: RDYQ BLOCK SIZE: 3

USE: The aircraft availability queue contains the \,.
number of a specific aircraft type that will -
i‘.r be available for takeoff at a specified time. p

AIROPS, INPUTA N

4 not applicable :..;
READY(3) 2
\J‘ .:‘.‘
i ELEMENT TYPE ELEMENT t;::f ~
. NAME MEANING/USE
- PRDYQ Next aircraft element
S ACTIME Time aircraft will be ready \
g NUMAC Number aircraft to be ready .
| e
: s
-~
o
- <
I :.:
.'.. -
- bl
1 Eow,
- ‘7
e
e
%
~

m:".
»
‘t‘

-
e
I N
v S
o S
L ':\

107

;‘T-.

I B P Y

» " e e .
A A -
ante les in.

‘‘‘‘‘

READY

Identifies a specific aircraft type under
control of the WOC

INPUTA
not applicable

WOC(9) DATE:

'..'_' L fr"
AN

ATV

’ I
(B

A

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PREADY Next aircraft element
ACTYPE Aircraft type
PRDYQ Aircraft ready queue

108

CAAMN S S T S S Attt

R
E STATUS
USE: Status of subordinate units, created if
§.~ subordinate flag in input =2.
:
. INPUT
L DELETED BY: N/A
: NODE(19) DATE:
,'-
yﬁf ELEMENT TYPE ELEMENT
NAME MEANING/USE
v PSTATUS P Pointer to next status structure
- 2 UNITID)| Identifier of status unit
o 3 TIMEB I Last time before status updated
' 4-14 NB I Number of blue weapons
” 15-25 BLOSS R Number of blue losses
26 TIMER I Last time red status updated
. 27 PFOE P Pointer to red foe structure
28-38 RLOSS R Number of red losses
o 39 POSB I Blue posture
Y 40 POSR I Red posture
" 41 FRB R Red to Blue force ratio
v 42 PFRQ P Pointer to next status structure in force ratio queue
LFRT I Last time force ratio calculated
v
=
."_’;
[
»

.......
......

T A L N AT A
l‘--.:- PN AT SN I IS SO INN I M N

2

——

R

BLOCK NAME: SPOT REPORT BLOCK SIZE: 21
USE: Structure for combat loss data for message types
3126 & 3130.

CREATED BY: RPTLOS
DELETEDBY: ATODEL
ROOT: MSG(18) and NODE(20) DATE:

ELEMENT TYPE ELEMENT
NAME MEANING/USE

PSPOT Pointer to next data report

ORIG Node identifier to report originator
TIME Time report was created

Flag; =0 foe, =1 subordinate data
Losses of combat systems
Posture of unit

Input process number

unused

110

0

e
)

o

.
)

W
AN

;S
“y “y

o 'Q’ A

¢ 'f .IA' Y

., -'r’1 ’-"'r
’

4"("'

R B, . I T T O . e Mt dab e -l B an B ek b A . oW
od T S Sl T B S RN AN 2 DA A e Sl Jie -ai Wi “afe b e an)- on b 2ie b 2 T T T
Paiiacht Dl i Bl DA Mt SaSte s e Pl 280 WA Wi 2 a1

(N

1

AL-".

s BLOCK NAME: WOC BLOCK SIZE: 10

USE: This structure contains data on aircraft on the

N ground and parameters that effect their

» assignment to CAS missions

- INPUTA

. not applicable

L CRC(5) DATE:
t’ ELEMENT TYPE ELEMENT

NAME MEANING/USE
1 PWOC Next WOC
- 2 D Unit number of WOC
-
3 TYPE Unit type of WOC

_ 4 WOC's node structure

. 5 Alert response time
. 6 Enroute time

. 7 Minimum aircraft on mission

N 8 Probability of survivability enroute
- 9 Aircraft ready queue

10 Ground turn-around time
-
s
N
r,‘:,
111

®

.........
.......................

PR S

7 WE T

50

,,\
22

AR
A -

R S d

]
.l

PLI

L

PY VI S

~ "
.

R)

B.2.9. Program Notes

This section contains notes on unique situations in the
C3EVAL model and its data bases.

During the development of the code it became convenient to

preassign certain data values. These numbers may be required in

the data sets and their use must coincide with the definitions

below:

Node type for WOC 7000

Message number for external air requests 3000,2900
Message number for force ratio air requests 3400

Message number for CAS notifications 7000

Message number for red losses 3126

Message number for blue losses 3130

Message number for foe's identification 3136

Process numbers for random created messages 3800,4800,5800,

6800,7800,5900,7900

A message type 3400 is created in subroutine Combat when the
force ratio falls below the input threshold value. The force
ratio is a function of all 11 weapon types against the systems
allocated. 1If CAS is zero then SAMS will contribute nothing to
the force ratio. Adding a few blue CAS sorties into combat with
a large number of SAMS with cause the force ratio to shift
significantly to the side with SAMs.

Routine RulPrt has the types of nodes in a data statement.
If additional types are used they will not be printed out on File
C3ECHO unless this array is changed.

The following comments pertain to input values. File C3pATA
has a data set "LMNO." The first wvalue is the input threshold to
hold messages that exceed this count. However, all messages
input at the node that have the same priority are treated the
same. For example, if the hold limit is 5 and there are 3

112

L.’ o Sty e
3 S"' .‘ .’ ‘)" ‘l’

PR N]
A NN

.g- ""'... R ‘ '- ..IA ..l *,

AV
‘l ._¥ :. '.'
o

poe

,‘ .

R AR O W

e
VR e
e
P

AN |

v e

priority l's, 3 priority 2's and 3 priority 3 messages, the
algorithm will allow all 3 priority 1's and all 3 priority 2's to
be input because the limit fell in the priority 2 count range.
All messages with priorities higher than 2 will be held (if their
data useful time is not exceeded) or deleted. The priority level
algorithm is also applied to messages at the delete limit. The
limits are cumulative (i.e., if the limits are 5 and 9) the num-
ber of candidates to be held is 4).

The third and fourth values are for output limits which
operate the same as input except that the priority level
algorithm is not applied.

Post processing graphics read files TIMET and LOSST to get
their input. These files are created by C3EVAL if the graphic
flag is on in C3DATA, Flag Number 14. Red and blue weapon
strengths and combat postures may be changed during the game.
File CBDATA would have two additional lines of data (1 for red
and 1 for blue) with the desired times for the change. All 11
systems are modified by this input (a minus sign removes forces)
with the exception of blue CAS. This field is not used. All CAS
for blue must be requested through the network and is subejct to
aircraft availability of the WOC.

Message types that are created by successful completion of a
decision rule are used to create specific messages at a node and
are placed on the message type's primary destination path and
communications type to the receiving node. If the primary path
and communications type does not exist (note capacity may be zero
but the path exists) then the message will be deleted and an
error written on C3TIME.

The AODATA file may contain CAS allocation parameters for a
node that commands combat level units. If allocation parameters
exist for the type of CAS request message received, subroutine
ATOALO approves the requests if they meet the allocation criteria

113

v

'l

“»
> RE

ST "t'?"

!

- v
AR

R
X
A A

-

I AR N
IRIOKA

- "' .,-""
AN

) w50

AR

2 v,
ﬁ??iﬁ f Aoy

[/

[

2,

AW

N R Ty v Ty ryYw

of number of sorties currently available to allocate and the -
priority of the request. This priority is based on the node's

perception of the requestor's force ratio. This force ratio is

calculated by routine PRATIO as the sum of red weapon types one

plus 4 times eleven divided by the blue weapon types one plus 4

times eleven. Requests for CAS are filled completely for each

request as long as sorties are available.

4 AL BN

7

‘_
s

B.2.h.

Internal Code Documentation

115

W v
o s

et
P Y
. a_e
A

NI

r——vr r'r‘r"i
e I ~i1 . AN

-~
P

,,.
R
.

. 2 eer

P
o F

x\
L A
:

PROGRAM C3EVAL

E A EE R RS AP R R R R R R AR KK R AR R AR A KK E AR R A RS A K F R R AR KKK KRR K X
* MAIN PROGRAM, TEST NODE REVISED MAY 6, 1985

* CALLS DMINIT, INPUT, EVENTS, OUTPUT, RESTOR

XXX B R B XX KRR XK KRR KKK KEE KRR K KKK KKK KKK KKK KEKKERXKEK KK KKk KKKKKX KX

*INITIALIZE I1I/0 UNITS

*INITIALIZE DYNAMIC MEMORY

RESTART RUN

*INPUT SCENARIO AND TIME ZERO DATA
INPUT RULES AT TIME ZERO

*SIMULATE EVENTS

*PRODUCE FINAL REPORTS AND SAVE STATUS

R A ATy
-)

1

2

I

ax

"U)‘.’ v

\ A
l- 20N N

s 28 TS PF oy W

r vrvY-
Sl

‘;‘ [".l'.

by,
SUBROUTINE ALOCAT £ﬂ
I EE RS EE R R E R RS R R R R R R R RS R EE R R R R R E R R R R R R R EREERREERSERER. - ¢
* ALLOCATE OUTPUT TO LINKS USING CAPACITY AND DIRECT o
* COMMUNICATIONS ONLY
I EE R R R R R R R RS SRR E R R S R E R R RS R R R E R E R R R R R R S R R E R R EEREREEREE] e
* CALLS - FIND, ERROUT, SNAP o
I E RS R EE R SRR R R E R RS R R ERE SRR R R R R R R R R RS R R E R R RERESRERE] "::,
GET PIRST NODE)
DO FOR ALL NODES a3
DO FOR EACH MESSAGE ON FUTURE QUEUE
CHECK TIME e
MOVE MESSAGE TO HOLD QUEUE %
ERROR IN ROUTING e
DESTINATION FOUND o
FIND LINK TYPE %
ERROR IN ROUTING
GET NEXT MESSAGE &
DO FOR ALL DESTINATIONS B
DO FOR ALL LINKS o
FIND LAST SEND MESSAGE R
LAST MESSAGE FOUND S
MOVE HOLD QUEUE =
LOCATE LAST SEND MESSAGE IN CAPACITY e
LAST MESSAGE FOUND R
MOVE REMAINING MESSAGES TO HOLD QUEUE N
END OF SEND QUEUE CORRECTION N
GET NEXT LINK 3
GET NEXT DESTINATION
END OF SEND QUEUE JUSTIFICATION o
GET NEXT NODE Fu
LAST NODE COMPLETED 3
2
_"
)
o
N
N
3
.:_\
8
R
Ceb

117

(Z 5 (57

G2

l"“

; 'ﬂ
"

T
o
et

A

Y.

,‘
S

o

SUBROUTINE ALTOUT

AR B R R LKA SR KRR RN R AR R K AR R A KA KRR KA AR RS KA KRR RS K SRR R K N £ ¥
* REVIEW MESSAGES IN HOLD QUEUES TO SEE IF THEY SHOULD
* BE SENT VIA ALTERNATIVE DESTINATIONS

EEXEEXKEEE KA I XXX X XXX E R R LA X KKK KA XX KKK K KX R RKXEEXXE R XX X X X X

* CALLS MOVMSG, SNAP, FIND
I ZEZZ T T EE R R EENNEESEREEREEE R R ERRERERRERRRR R R R E R R R R R R R R R RN
DO FOR ALL NODES
DO FOR ALL DESTINATIONS
SET ALLOCATION FLAG OFF
CHECK NODES ALTERNATES TO THIS DESTINATION
DO FOR ALL LINKS TO THIS DESTINATION
DO FOR ALL MESSAGES ON THIS HOLD QUEUE
MOVE MESSAGES FROM PHOLD TO ALTERNATEl
BY FIRST MESSAGE ALTERNATE
RECHECK HOLD QUEUE
CHECK IF ALTERNATE 2 EXISTS
MOVE MESSAGES FROM PHOLD TO ALTERNATE 2
BY FIRST MESSAGE ALTERNATE
RECHECK HOLD QUEUE
MOVE MESSAGES FROM PHOLD TO ALTERNATE 1
BY SECOND MESSAGE ALTERNATE
CHECK IF ALTERNATE 2 EXISTS
RECHECK HOLD QUEUE
MOVE MESSAGES FROM PHOLD TO ALTERNATE 2
BY SECOND MESSAGE ALTERNATE
GET NEXT LINK
GET NEXT DESTINATION
GET NEXT NODE
LAST NODE

118

vy o e .

- ‘r_ ‘\' ., ‘f{ -':v: l

vy

1
1

" b ']
AL‘

|

I

% %

17"

g f{?kal

-y
o

y X%y

o
h3 SUBROUTINE CONTRL e
Fe XXX XX XXX XEXE XA X E R KR KA E KX R R KR XXX R R E XX E XXX EE X KRR A E X E X E X X K & X % X -'R

. * READ IN MODE OF OPERATION AND PRINT CONTROL FLAGS N

; ; * PRINT FLAG (PFLAG(I)) DEFINITIONS

» 1 ALL MESSAGES AT ALTERNATE DESTINATION
. 2 ALL MESSAGES ON INPUT QUEUES 2%
[;. . 2 ALL MESSAGES ON OUTPUT QUEUES N
= . 4 ALL MESSAGES ON FUTURE QUEUES 3
. 5 ALL MESSAGES BEING HELD _
. 6 ALL MESSAGES DELETED
& . 7 STATUS OF RULE STRUCTURE v
: . 8 CAS TAKE OFF SCHEDULED N
. * 9-10 NOT ASSIGNED o
& * 11 TRACKED MESSAGES AT ALTERNATE DESTINATIONS NO%
o * 12 TRACKED MESSAGES ON INPUT QUEUES v
* 13 TRACKED MESSAGES ON OUTPUT QUEUES
- * 14 TIME T OUTPUT ON FILE 14 REQUIRED g
e *+ 15 COMBAT LOSS VECTORS o
* 16 FORCE RATIO CALCULATIONS =
* 17 RULE STATUS AT FINAL TIME e
o * 18 NOT ASSIGNED g
- * 19 RANDOM PROCESSING REQUIRED
* 20 USED INTERNALLY FOR SUM OF FLAGS <
’-:: EXEKEXEXKEXEXEX XXX XX KR XEEE XX R KX EE XA XEE XX XA KKK KX KK XXX R XXX XX XXX X X X% ‘-:"_l’
= * PRINT MODIFIER (PMOD(I)) DEFINITIONS i
: 1 OPTIONAL OUTPUT RESTRICTED TO THIS NODE i
: 2 OPTIONAL OUTPUT STARTS AT THIS TIME
b . 3 OPTIONAL OUTPUT STOPS AFTER THIS TIME
XK KX KXE XK KX EKEKEEKEKKKEXEEEREKKXEXKKEKRXEEKKEEXEEXEKEXEKKKXXEEKE XX K kXXX \;f‘
N
iy
23
‘ 9]
33
e
- o
r
" bR
Y.
".-
4,
0.. ‘*.‘o.
g
R <
<
: T

r.z .
[S

119 A

j
s’y
.
ot

|

P T S “\ Lo

- CR A T P
e e N

"'"

ro o,
ﬁg SUBROUTINE DMINIT(MEMORY,MPTR, IGBPTR,MAXDM) »
- EEX AR E R AR B E XX E XA RN E RN KRR KK KX A AR R A KKK KRR R B X KX S XX KR F XXX KK KX K K Kk K X -

* INITIALIZE DYNAMIC MEMORY ¥
u KX K ERRRKEREERE R AR K AR RN ER XK XK RN KR KX KRN KRR N KX KX KRR R KK KK K K X K & % X %
- *INITIALIZE MEMORY POINTER lﬁ

*INITIAIZE GARBAGE POINTER

s *CLEAR DYNAMIC MEMORY

B b
3

. R

. o
..'I
o
lh'

RSEERY.

bl -
‘v, ok
. 0
.- -
"~ —
.. h
.‘ A l\\
- " NG
Ve
I--
D
. " “.
. .
» L)
(- .

T
LY
»

&4\
Y,

Y

E 120

0
N, SUBROUTINE ERROUT(MESAGE)

I EE R EEREERE R R R R R E R RS R R R R R RS R R R E R R R E R R R R R R R R ER RS R RE R R R R R LR -

* PRINT OUT ERROR CONDITIONS AND STOPS EXECUTION

I EEEFEESEEP R RSN ERREERE SRR R R EE R R R R EE R R R R E R E R R R R R R R R EEERSERESESERNES

AL PP

==
7 |

<
r I.
E :’
o.‘
2
-
L. -
- o
\‘.“ .-..
(Vg Al
. ';'
4 s
~ Y
. (S
W "4
o, :'-
L.'

s

-’

K

« pY
E
CaS -~
. v,
K

"

s

-
.-"
r.‘ L
-." ' e
. ! L
:
N
'— 2
- “
- o “h‘
N -
o _l -
b.“ .h‘.
™
2
- Q!
.'-
’ (3
~, Y
.
! v
&
-.'
. ...‘
-
7
.
| ..~

771

i

SUBROUTINE EVENTS

I EE R RS R EE R R SRR R R R R R R RS R R R RS R R RS R R R RS R R R R R R R EERR]

* PROCESS SIMULATION EVENTS FROM CURRENT TIME TO END
* OF RUN TIME
* CALLS MSGIN, NODE, COMBAT, AIRBAS, TIMOUT
XXEXXRXXKKKXKKEXEXXEEXEXEEXEEEEKXNKKEKEX K XKXKKEXEXEX KX KEXEEEXEXK K XK XX
INITIALIZE CMDRS STATUS BLOCK
START OF EVENTS IN A TIME INCREMENT

PROCESS TIME T INPUT

PROCESS EXTERNAL MESSAGES

PROCESS NETWORK

PROCESS AIRBASE

PROCESS COMBAT

CREATE OUTPUT

PRODUCE TIME T OUTPUT IF REQUIRED

TEST FOR LAST TIME INCREMENT
INCREMENT GAME TIME
END OF GAME TIME

122

R A A s o i i b ey

l"‘ ':ﬁ::
t" .r’"
SUBROUTINE EXTMSG
E AKX EXE XXX XK E KX KX K KKE KKK KKKERKKKEKXKEKXKXKKXKKXXKKEEXKXXX¥ XX KK X XXX -}:
. * GET MESSAGE FROM USER INPUT FOR CURRENT TIME N
s * PUT MESSAGE ON ORIGINATORS FUTURE QUEUE
* INPUT FOR MESSAGE
y * SEND TIME o
E.' * MESSAGE TYPE §
- * ORIGINATOR UNIT TYPE
* DESTINATION UNIT ID $
m * MESSAGE CREATION TIME
oy * TRACKING FLAG e
* ATO FLAG =
" * MESSAGE PRIORITY gt
Fa x TIME IN NETWORK s
e * ** ATO DATA g
_ * COMBAT UNIT ID
- * EARLIEST TIME ON TARGET
* LATEST TIME ON TARGET
* AIRCRAFT TYPE -
* NUMBER OF AIRCRAFT S
bt * TYPE REQUEST, O-PREPLAN, 1-IMMEDIATE
Kk XK K KR K KR K XK K K KK KKK K K kKKK KKKEKNXKKKRKKKKKKXKKXKHEKXKNXKXXKXI¥EKkXHNKDHNKDLX n
y SKIP OVER HEADER DOCUMENTATION o
e GET FIRST MESSAGE -
-3 CHECK FOR CURRENT TIME v
PROCESS THIS MESSAGE \ A
L CHECK FOR ADDITIONAL DATA N
. GET ADDITIONAL DATA
END ADDITIONAL DATA
o FIND NODE OF DESTINATION
- PUT ON INPUT QUEUE g
- GET NEXT EXTERNAL MESSAGE "
' END PROCESSING THIS TIME FRAME 4
»"j .\:.
N R
e ;‘.-;:I
g :
N
o, .
% >
) “
u‘.,' ‘-.\
E 3
‘ 123 f;'-:

B
o3
.

re”,

ra'e

4
.

R

. B _ o e e e AN e

Jt RS ' ot i) L0 Mt bt B aC 3 by Ret Bor gu b

SUBROUTINE EXTSPT(PMSG, PDATA)

 E R R R R R R R R R R R R E R R R R R R R R R R R R R R S R R R R R R R R R R E R R R ERE -

* EXTSPT GETS THE DATA SECTIONS OF EXTERNAL MESSAGES 3136
* AND PLACES THEM INTO THE DATA POINTER OF THE MESSAGE

® MK K K KR K KK K K KK K KKK K KKK K K KKK KK KK kKK KKK KK KK KKK KKKKKKKK KKK XKKN
GET FIRST INTEL REPORT

GET ADDITIONAL DATA ELEMENTS OF THE REPORT

124 [

........................
...

A }" "A.

e

SUBROUTINE FIND(PIN, N, ID, POUT)

I R R EEEEE RS SR E SR RS SRS EE R R EEE R R SRR ERE R R EREREEREREZERERSH::

* FIND A POINTER IN A QUEUE

EEXEXEX X EE X XXX XA X AKX X KX R R KX E R KX X KX XK XX KK X RKXXE XXX XRXX KK KK X

* INPUT

* PIN - POINTER TO TOP OF QUEUE TO BE SEARCHED
* N - OFFSET FROM PIN TO COMPARE

*

ID - VALUE TO MATCE WITH N
I E S RS S S SR E R SRR RS RS S RN RSN ERE NSRS EEERE R R R EREREREREEREREESSEH]]
* CREATES
* POUT - POINTER TO DESIRED ELEMENT
EEX XX XXX RN X E XXX XRKRXXE XA KRR XXX AR KX RXEZREFEX XXX XK EEX XX XX KX % KX
DO FOR ALL QUEUE ELEMENTS

COMPARE VALUES
GET NEXT ELEMENT
END OF SEARCH

XA AARS

-" L
2"y

5 s

e
-
‘.
~
LN
-
b
-
.
-
s
o
.’
L]

E
< N
e SUBROUTINE GIMME(NPTR, LEN, ISPACE) :
- X K % %k Kk K K K Kk K K XK KKk kKK X KKK K ¥ KNKKK¥EXKNKDIKDIEKEKNXKKOKNKOKIHNKXN¥IEXKDIKIXKINXZKXSZXDIX¥EX%XXDINXHS:XK ,'
. * PROVIDE A BLOCK OF STORAGE FROM DYNAMIC MEMORY ¥
- X K % K K K % K K KK X K KK KK XK KKK KKKKKKKKKKKKKKKKKRKNKKXKK KKK KKXKXXXKXXXKX -
*+ INPUT 3

* LEN - LENGTH OF BLOCK "

» ISPACE - ARRAY THAT CONTAINS DYNAMIC MEMORY .

X K K K K XK X Kk X XK X kK XX KK KX XXX KKDKDKXXDIEXZKD€NKDIRDIEINKIKDI KIK?KONKD?NKIKD?KOIK? EKDIKDK:k?KINKHIkKZKXDIKHNX%X5KNKDINX:X .!

* OUTPUT .

Y * NPTR - POINTER TO START OF ALLOCATED BLOCK -
'_‘. kK K Kk K Xk 3k K Kk ¥k 3k Kk ok Kk ok Kk ok %k K Kk ok Kk kK Kk Kk Kk k kKK KKk kokokokkkXk3KIXIXI¥XXKD5XKDI¥XkKSIKS?F®INKS5%XIKD?NKHXSHXK o
- *SEGMENT GET VIRTUAL SPACE -
*IOUT IS OUTPUT DEVICE -
*SEARCH GARBAGE LIST g
*DO UNTIL LIST ENDS N

*IF (SIZE .EQ. LENGTH) THEN a

*SET PTR TO FIRST BLOCK s

*SNAP GARBAGE PTR -

*ALLOCATE VIRGIN STORAGE o
*UPDATE VIR SPACE PTR o

o * STORAGE OVRFLOW =
b *2ERO SPACE BLOCK -
*END SEGMENT y

¥

.......... . R T S S I T N TS
........... 2% et At

...... e o e - - . . e LN e S .
e e e e e e AN e e CRPIRCRS N R T e e e T T T T e AP I A AT
. N I P, S o R T T ."\AA.A‘A.:‘."_‘:_H%A(.J

SUBROUTINE HOLDQl (IPASS)

XXX KX X KX E KK KKK KKK KKKKEKKKKKKERXX KK KKKKKEKKEKKKXKKKKKkkKKE¥ kX%
* MOVE PRIORITY MESSAGES FROM HOLD QUEUE TO ALTERNATE

* COMMUNICATIONS LINK1 SEND QUEUE

XK KR KK KK KKK KKK KR K KKK KKK ERKKKEEKK KRR KEKEREEKKKKKKKKKK KR KXk %X

* CALLS - SNAP, FIND
KRR KK Kk K Kk Kk kK KKK K Kk KK XKk Kk KKK XX KkKKKKKXKKKXKNKNKKKKXHNKIKKIKKXIXZHKSHKDINXDZXXEXDIXDK KX
+ INPUT
* IPASS - FLAG FOR SELECTION OF DESTINATION
Bk Kk ok ok ok ok kK K ok kK Kk K kK KKK KKK KK KKK KKK KKK KKEKRKKKEKEKKEKKKKEKKKXKKKRKK
DO FOR ALL NODES
DO FOR ALL DESTINATIONS
SET ALLOCATION FLAG OFF
DO FOR ALL LINKS
DO FOR ALL MESSAGES ON HOLD QUEUE
SET UP FOR MULTIPLE DESTINATIONS
GET ALTERNATE DESTINATION
CHECK IF ALTERNATE EXISTS
FIND DESTINATION STRUCTURE
GET FIRST ALT LINK OF MESSAGE
CHECK FOR O TYPE
GET ALTERNATE LINK
COMPARE LINK TYPES
LINK TYPES MATCH
CHECK ALTERNATE LINK HOLD QUEUE PRIORITY
CHECK SEND QUEUE
HOLD MESSAGE HAS GREATER PRIORITY
CHECK CAPACITY
PUT HOLD MESSAGE ON SEND QUEUE
SET FLAG = 1
GET NEXT SEND MESSAGE
END OF SEND QUEUE
GET NEXT LINK
GET NEXT MESSAGE ON HOLD QUEUE
END OF HOLD QUEUE
GET NEXT LINK
END OF FIRST LINK LOOP

MOVE EXCESS MESSAGES FROM SEND TO HOLD QUEUES
DO FOR ALL LINKS
DO UNTIL LINK CAPACTITY USED
GET CORRECT CAPACITY
GET NEXT MESSAGE
MOVE EXCESS MESSAGES TO HOLD QUEUES
CHECK FOR ALTERNATE STATUS
PLACE IN THIS LINK HOLD QUEUE
END THIS MOVE
PLACE IN ANOTHER QUEUE
GET NEXT MESSAGE
END MESSAGE MOVES
GET NEXT LINK
END OF LINK QUEUE
GET NEXT DESTINATION
END OF DESTINATION QUEUE

‘:“hcﬂ';'-‘:\"'.'-‘t'-‘t\".'."‘.*'.'\," LA Aol RN g A A g it A M L A i it S et e i it it s ek gt o it it b Sab S0 25 Bt v d A A S0 02
E

GET NEXT NODE .
LAST NODE COMPLETED -

RAAT

SR

e QS AR PO P DR
\2 't...ﬂ' o) ‘ '\1'.’-‘ St A W™ ‘c.'-.- C '-'\~' '-'.\J" S '.'\“ "~

SUBROUTINE HOLDQ2 (IPASS)
EXEXRXRXXKEXEKKEXEEXKXREEXEXKEEXREXKREKKEXEXEXEEREEXREXEXEKEEXX XXX EXE X KKXXKXXKXX
* MOVE PRIORITY MESSAGES FROM HOLD QUEUE TO ALTERNATE

* COMMUNICATIONS LINK2 SEND QUEUE

* %k K kK K K % ok Kk Kk KKK K KK KK KR KKKKKRKKKXKKKXKNKXKKKKRKKXKKKKXXKKXXXkXX

* CALLS - SNAP, FIND
XK EX X KK KK KKK KKK KKK KRKEERRKEREXERARKEREREKEERERXRKER KKK KRR XX KX XXX XXXKX
* INPUT
* IPASS - FLAG FOR ALTERNATE DESTINATIONS
k ok ok ok kK ok X K K K K kK K K K K ok ok K K K K K K KK KK KKKKKKKKKKXKKKKKXKkKKKKXKXkKkKXX
DO FOR ALL NODES
DO FOR ALL DESTINATIONS
SET ALLOCATION FLAG OFF
DO FOR ALL LINKS
DO FOR ALL MESSAGES ON HOLD QUEUE
SET UP FOR MULTIPLE DESTINATIONS
GET ALTERNATE DESTINATION
CHECK IF ALTERNATE EXISTS
FIND DESTINATION STRUCTURE
GET SECOND ALT LINK OF MESSAGE
CHECK FOR O TYPE
GET ALTERNATE LINK
COMPARE LINK TYPES
LINK TYPES MATCH
CHECK ALTERNATE LINK HOLD QUEUE PRIORITY
LINK TYPES MATCH, CHECK SEND QUEUE
HOLD MESSAGE HAS GREATER PRIORITY
CHECK CAPACITY
PUT HOLD MESSAGE ON SEND QUEUE
SET FLAG = 2
GET NEXT SEND MESSAGE
END OF SEND QUEUE
GET NEXT LINK
GET NEXT MESSAGE ON HOLD QUEUE
END OF HOLD QUEUE
GET NEXT LINK
END OF FIRST LINK LOOP

MOVE EXCESS MESSAGES FROM SEND TO HOLD QUEUES
DO FOR ALL LINKS
DO UNTIL LINK CAPACITY USED
GET CORRECT CAPACITY
GET NEXT MESSAGE
MOVE EXCESS MESSAGES TO HOLD QUEUES
CHECK FOR ALTERNATE STATUS
PLACE IN THIS LINK HOLD QUEUE
END THIS MOVE
PLACE IN ANOTHER QUEUE
GET NEXT MESSAGE
END MESSAGE MOVES
GET NEXT LINK
END OF LINK QUEUE
GET NEXT DESTINATION
END OF DESTINATION QUEUE

129

L
oy

-

b

r

T T e

-,
»
4

P e
S

Sk LN
E" 'y&'l W 'A'dl(‘l

v’

Lo v
. .

'*'Ar“v;"?’ T

L

-
P

A S I

e . 7

et

& _gat

n\b.%\ .n.’*. .Ul

LAST NODE COMPLETED

GET NEXT NODE

.

L& AAE

o AR K b 2 NPT, Jlwases

AR Bl Nt N S

e e e
sTa e s e
v o

130

.

A o S e KX oahs . R s R wie B aed B w8

&

hAS

«
AR N

P

~

:l.“l.'. ;}

SUBROUTINE INPUT

AXXEXE XXX E XXX XXX EER AR KRR E KX R KR KKK KKK K KX E XXX KKK K KX KKK K& XXX

* WORKS FOR T = 1 ONLY

I EERERE RS R R EREERE R R R RS SRR R R R R R R R R R R RS R R R R R EREE R R RE RN

* CALLS FIND, GIMME
Xk kX K X &k K K W Kk ok %k K K K ok ok Kk Kk ok ok kR kK ok oKk KK KX KXKKKEKKKKKXXKNKXKXXXKXXXkXDZX
CHECK FOR TIME T DATA
PUT TIME T DATA ON UNIT 11
NODE IN
CHECK IF NODE STRUCTURE EXISTS
CREATE NEW NODE STRUCTURE
INITIALIZE NEW NODE STRUCTURE
CREATE MESSAGE COUNT STRUCTURE
CREATE DESTINATION STRUCTURE
CREATE STATUS STRUCTURE FOR SUBORDINATES
SET COMMANDER ID
END NODE IN
INPUT NODE MESSAGE PROCESSING LIMITS
CHECK FOR TIME T DATA
PUT TIME T DATA ON UNIT 12
INPUT COMMUNICATIONS LINK DATA
CHECK FOR TIME T DATA
PUT TIME T DATA ON UNIT 13
PROCESS FOR EACH END OF LINK
FIND ORIGIN
FIND DESTINATION
CREATE LINK STRUCTURE
PUT LINK ON END OF QUEUE
END OF LINK QUEUE FOUND
INITIALIZE LINK DATA
CHECK FOR SECOND PASS
SWAP NODES AND REPEAT PROCESS
END OF LINK IN
INITIALIZE OUTPUT MESSAGE PROCESS
PROC IN
INPUT COMBAT DATA
INPUT AIR OPERATIONS DATA
INITIALIZE ALL ALTERNATE DESTINATION POINTERS, DESTINATION
UNIT TYPES, AND POINTER TO COMMANDERS

DO FOR ALL NODES
REPLACE COMMANDER UNIT NUMBER WITH POINTER
DO FOR ALL DESTINATIONS
FILL IN DESTINATION UNIT TYPE
REPLACE DESTINATION ALTERNATES WITH POINTERS
CHECK ALL DESTINATIONS FOR BOTH ALTERNATES
SET ALTERNATE 1
SET ALTERNATE 2
GET NEXT DESTINATION
GET NEXT NODE
LAST NODE CHANGED
PREPARE TIME T FILES FOR USE

1

Prerer
Had'r i

" b

A A l" ""'; " ‘.
ST

’4

Lt e
8y & &

Pa §

. .
)

v, -
. .
.

b

o

¥ v v -
s
'5,\,5 Y %

Q
»,

1
.-
A

o.‘,
gg SUBROUTINE MOVMSG(PMSG, PMSGO, PDEST, IUNIT, IALT) ﬁ;
I R RS E E R R R R R R R R R R R R R R R R R S R P R R R RS R R E R R R R R R R R R R R RS RS -P
. * MESSAGES IN THE PMSG QUEUE ARE COMPARED TO DESTINATION ﬁz
.s * UNIT TYPE AND TO MESSAGES IN THE PDEST > PSEND QUEUE
* FOR LINK TYPE, PRIORITY AND CAPACITY. APPROPRIATE Vo
* MESSAGES ARE MOVED AND LOWER PRIORITY MESSAGES ON THE e
;t * SEND QUEUE WILL BE BUMPED. by
AN I EE R E R E R R R E R R R SR RS R E R E R RS R R SRR R R E R R E R R E R E R R ESERERS "é
* INPUT e
* PMSG - POINTER TO SOURCE QUEUE
o * PMSGO - LOCATION OF PMSG o
- * PDEST - POINTER TO A DESTINATION STRUCTURE I
. * IUNIT - DESTINATION UNIT b
g * IALT - ALTERNATE DESTINATION FLAG D
~ * - FIRST ALT = 1, 2ND ALT =~ 2 .
EEREXXEE XK XX KKK EXXREKXKEE R XK R KK KRKRX XXX KK EEXRERRXXE KR KKK KKK XX KX XX
K SET ALTERNATE FLAG %
o DO FOR ALL MESSAGES 2
CHECK MESSAGE FOR NO ALTERNATE =5
., CHECK FOR DESTINATION UNIT "
’*; UNIT OK, TRY EACH LINK v
GET LINK -
LINK TYPE MATCHES D%
7, PUT MESSAGE ON SEND QUEUE BY PRIORITY s
e CHECK CAPACITY Ny
PUT MESSAGE ON SEND QUEUE "4
N RESET TRANSMISSION FLAG o
i GET NEXT MESSAGE ON SEND QUEUE
LINKS DONT MATCH, GET NEXT LINK N
END LINK QUEUE R
UNIT TYPE WRONG =)
LAST DESTINATION R
GET NEXT MESSAGE ON MESSAGE QUEUE N
N LAST MESSAGE PROCESSED
"
o -
i
=3 \:.:.
'a;‘ \.':.
; DAY
K)
) N
é, '
..~': '::::
\‘.
S
. 132 N
v r

A" W ® t @ e m e YaT N, e, e e e R e e .
T m e Vet N, e, . 3 « T e D S O i T P PP S
.« o - .. LISy

...... R St IR TR T PO L PR O T B)
T Lag ("I S S04, . D o . A AT AN R e e e T e tem e e
4‘ B . (.-.‘ _f‘ " . e LI . R N . o X

o
-

ARCUEOL BENCTORE SR e

SUBROUTINE MSGIN(PMSG, POMP, PNODE)

EE AR R AR KR AR A A AR AR KRR AR KA AN KRR A KKK KRR RN K KX A A FE KK KKK KKK K &
* MSGIN LOGS AN INPUT MESSAGE INTO EACH OUTPUT TYPE BY
* ORIGINATOR AND INPUT TYPE, SAVES MESSAGE DATA AND

* DELETES MESSAGE SPACE

I EEEE RS EEERERE R R R EE R SRR R R R R R SRR R R R R EREREEESEREREENSREJR:]

* CALLS GIMME, RELEAS

I B E R EE R R R R R R R R R R R R R R R R R R S E R R RS S R E R R RS R E R R EREEREEREENERINR]

* INPUT

* PMSG - POINTER TO INPUT MESSAGE

* POMP - POINTER TO DESTINATION NODE
* OUTPUT MESSAGE TYPE QUEUE

IR E R EEERE R R E R R R R R RS R R R R R R R R R R R R R R R R ERERERERERESREES)

GET INPUT MESSAGE TYPE
GET INPUT MESSAGE ORIGINATOR AND TYPE
DO FOR ALL OUTPUT TYPES
GET FIRST INPUT POINTER
DO UNTIL INPUT TYPE FOUND
TEST MESSAGE TYPE
TEST ORIGINATOR TYPE UNIT
LOOK FOR EXISTING UNIT LOG
GET NEXT LOG
ORIGINATOR NOT ON LIST, CREATE ENTRY
PUT RULE NUMBER IN DATA STRUCTURE

SET FLAG AND AGE
CHECK FOR OTIME; IF OLD END PROCESS
SET MESSAGE TRACK FLAG
NEXT INPUT TYPE
NEXT OUTPUT TYPE
LAST POMP, SAVE MESSAGE DATA
CASE (MESSAGE TYPE)
AIR OPERATIONS
PUT ATO ON ORDER QUEUE
PUT ATO ON REQUEST QUEUE
SET RETURN NODE POINTER
SPOT LOSS REPORT
END MSGIN

LI]

PR
L e

(A
A &

WRN &

o,

W=

AR
. _r

". Ay ¢

o
-‘_..
AP

YNN

SUBROUTINE NODE
XXX EXKEXRE XX KRR XK K E XK EE XK ERE XX R XK X XK XK F KRR X XK XXX E KKK XX KXKXX
* PROCESS C3 EVENTS
* CALLS - FIND, ERROUT, SNAP, MSGIN, MSGOUT, ALOCAT,
* ALTOUT, LIMIT, SEND
XX K KKK K ok K KKK RN KK KX KA KKK kKKK KKK KKK KKK KK KKK K KKK KKKKKKKXkXkX
PROCESS INPUT MESSAGES
OPTIONAL PRINT
IF(PFLAG(20).EQ.0) GO TO 8
ALTERNATE DESTINATIONS
INPUT QUEUES
GET FIRST NODE
DO FOR ALL NODES
GET NODE IDENT.
LIMIT NUMBER OF INPUT MESSAGES
DO FOR ALL MESSAGES ON INPUT QUEUE
IF MESSAGE IS ADDRESSED TO ANOTHER NODE
REROUTE MESSAGE, PUT ON HOLD QUEUE
FIND DESTINATION LINK
ERROR IN ROUTING
DESTINATION FOUND, SNAP IN
RESET ALTERNATE COMMUNICATION FLAG
FIND LINK TYPE ‘
CHECK LINK EXISTANCE
TRY FIRST ALTERNATE LINK
LINKE MATCHES, MODIFY MESSAGE
TRY SECOND ALTERNATE LINK
LINKE MATCHES, MODIFY MESSAGE
DELETE MESSAGE
USE DECISION RULES FOR MESSAGE PROCESSING
GET NEXT MESSAGE
LAST MESSAGE, GET NEXT NODE
RETURN ANY HELD INPUT MESSAGES TO IMQUEUE
LAST NODE
PROCESS DECISION RULES
GET FIRST NODE
DO FOR ALL NODES
DO FOR ALL OUTPUT MESSAGE TYPES
GET FIRST TYPE OUTPUT
TEST FOR PERIODIC PROCESS
CHECK FOR PERIODIC TIME
TEST FOR FIRST TIME FOR PROCESS
TEST FOR RANDOM PROCESS
DO FOR ALL INPUT MESSAGE TYPES
GET FIRST TYPE INPUT
INITIALIZE FLAG SUM
DO FOR ALL INPUT MESSAGES
INCREMENT AGE
TEST FOR SINGLE USE FLAG
TEST FOR USE OF MESSAGE
TEST AGE GREATER THAN LIMIT
SET FLAG TO OLD
SUM INPUT FLAGS
TEST FOR EACH MESSAGE TO CREATE A PROCESS

44

-

v

GET NEXT INPUT MESSAGE
GET NEXT INPUT TYPE
INPUT TYPES COMPLETE, TEST FOR OUTPUT
OUTPUT ACTION REQUIRED
OUTPUT ACTION IS PERIODIC
GET NEXT OUTPUT TYPE
GET NEXT NODE
LAST NODE
LIMIT MESSAGES PROCESSED
ALLOCATE OUTPUT TO LINKS
ADD ALTERNATE ROUTINGS
ADJUST LINKS TO LIMIT
SECOND ALTERNATE ROUTINGS
ADJUST LINKS TO LIMIT
FIRST ALTERNATE DESTINATION
LINK2
SECOND ALTERNATE DESTINATION
LINK 2
THIRD ALTERNATE ROUTING
OPTIONAL PRINT
OUTPUT QUEUES
FUTURE QUEUES
HOLD QUEUES
SEND MESSAGES
END OF NODE PROCESSING
*DO UNTIL LIST ENDS

0%

...........................

SUBROUTINE OUTPUT

WX R R K KR KKK KKKk Kok kK KR KK KKK KKK KEKXEEKKEEKRKKR KKK KKKk KE KK KRK KKK XKKX

* PRODUCES A SUMMARY OF MESSAGE TRAFFIC AND CLOSE AIR SUPPORT
EXREEEREXE XX XKXE X KR KRR R ERKEREERERERKEE R E KRR KRR REK KX XK E KR XXX XXX
IOUT IS OUTPUT DEVICE
DO FOR ALL NODES
DO FOR ALL DESTINATIONS
DO FOR ALL LINKS
DO FOR ALL MESSAGES ON HOLD
GET NEXT MESSAGE
GET NEXT LINK
GET NEXT DESTINATION
GET NEXT NODE
LAST NODE

- L] L P T U I P S O I P PO S I T T R e L L VL RN - -""‘."~' -
PRI L R A P P T R I OO PR T e oA T, TN e ~

4

P

.'
»

. ——
I

Ty
.
ol

SUBROUTINE PMSG1(PF)

I ZE R EE R R E SR R R R R E R R R R R R R R R R S R R R R R R R R R R R R RS R R R R R R RN N

* PRINT OUT ALTERNATE DESTINATION, INPUT AND FUTURE

* MESSAGES UNDER PRINT FLAG CONTROL
* INPUT

* PF = 1 ALTERNATE DESTINATION

* 2 INPUT QUEUES

* 4 FUTURE QUEUES

% & % % % ¥ k %k %k Xk %k ok %k ok Xk ok Kk K Kk kK K ok Kk K K K KKk K Xk ok K K Kok Kk KKKKKEKKKEKKXKXKXKXKXX

IOUT IS OUTPUT DEVICE
PRINT ALL NODES
TEST FOR ALTERNATE DESTINATION
GET NEXT NODE
TEST FOR ALL INPUT MESSAGES
TEST FOR FIRST PRINT TIME
TEST FOR LAST PRINT TIME
TEST FOR SPECIFIC NODE PRINT
PRINT ALL NODES
TEST FOR ALTERNATE DESTINATION
GET NEXT NODE :
PRINT SPECIFIC NODE
TEST FOR ALTERNATE DESTINATION
TEST FOR TRACKED MESSAGES
PRINT TRACKED MESSAGES ONLY
TEST FOR ALTERNATE DESTINATION
TEST FOR TRACKING FLAG
GET NEXT NODE

137

v .I 'l = s ’-'
A ."'. /3

Yo

AR

e v or v
Ay et

® s

Ty L

e

e'e el e
LR Y

X o

~
-""

‘-, N
S

.'l'.‘-/'
)

AR l,- i

rpp Ay
'-"

-' '—
O I

T e v
AR

»

Y %

[4 '/'.’.'f AR

-
>33
EQ SUBROUTINE PMSG2(PF) '
h XK k¥ K KKKEKEREKEXKKKKkKEXRKEKF XD KX KKKE XK EEX XXX EREKREE KK KKK X -l

f * PRINT OUT ALTERNATE OUTPUT AND HOLD ~7
!ﬂ * MESSAGES UNDER PRINT FLAG CONTROL

* INPUT 7N
* PF = 3 OUTPUT QUEUES o
éﬁ * 5 HOLD QUEUES)
CY XXX KKK KRR K KR KK KK X KR KK KKK KKK okXKKRKKEXK RN R X KKE R kKX Kk KKK KXKK KKk -",Q
IOUT IS OUTPUT DEVICE RGs
TEST FOR ALL INPUT MESSAGES
o TEST FOR FIRST PRINT TIME N
‘ TEST FOR LAST PRINT TIME o
. TEST FOR SPECIFIC NODE PRINT]
v PRINT ALL NODES
g GET NEXT LINK
GET NEXT DESTINATION
o GET NEXT NODE o
X PRINT SPECIFIC NODE RS
GET NEXT LINK o
- GET NEXT DESTINATION e
= TEST FOR TRACKED MESSAGES Y
PRINT TRACKED MESSAGES ONLY

_ GET NEXT LINK o
L GET NEXT DESTINATION N
N GET NEXT NODE e
e
'.‘l.
~4
‘b".‘,
S
nx'h‘
\.‘_
X
N
J~_
23
-‘..-‘
138 i

e
R
e

[R
X

N
Y.
SUBROUTINE RELEAS (NPTR,LEN,ISPACE) <
XKk Kk Kk K Rk Kk K KR XK K KR X XK XK KEKNKNKHKINKNKHKHKNKXKHKHNKHE®XKXKKXKEKKKEKKEXXXEXX KKk KEXXKXKKXXXKX -.:'
* SEGMENT RELEASE PUTS STORAGE ON GARBAGE LIST !
K Kk kK K Kk K KX XXX XK KK k¥ Xk ok Ok Kk KXk K kK KKkkook k¥ k kKKK KX XKkKkk¥XKKIXIEXH¥XINKIHKIHKZEXHWKD XDIX HEXIHIEXSK KDSK K
*I0UT IS OUTPUT DEVICE 7
*CHECK BAD PTR, LEN o
**DO UNTIL NO GARBAGE EQUAL LENGTH 2
*END DO o
*SNAP IN SPACE T
*GARBAGE LENGTH NOT ENOWN
*PUT STORAGE ON GARBAGE LIST NS
*END SEGMENT "
g
o
:.\'
ot
‘;.
!--"
5
o
2
S
2N
._"\.
’e
o
o
.\
139 ...'-

s}

A0

e W]
2ty

]

...

SUBROUTINE SEND

XK K K X K kK K K Kk Kk Kk K K ¥k K XK K KK XK kK KKKk KKKKKKNKR%RKKNKX¥XK%XKKkKXHKXXSXKX*XKNXHX%X
* MOVES MESSAGES FROM ORIGINATOR SEND QUEUE TO

* DESTINATION INPUT QUEUE, UPDATES LINK CAPACITIES AND
* DELETES OUT OF TIME MESSAGES ON HOLD QUEUES

%k k kK ok ok K ok Xk Kk K ok k K K ok Kk ok K ok Kk K ok ok Kk kok KK KK KX KKXKEKXKXKKXKKXKKXXkKXXK*

* CALLS - FIND, RELEAS
% %k Kk &k ok k Kk Kk k k Kk K ok Kk K %k K K %k K k %k K % ok k % %k k k k ¥ Kk kK K Kk kK K Kk KX KK XXKKXKXXXXXKXX
DO FOR ALL NODES
DO FOR ALL DESTINATIONS
GET DESTINATION NODE
DO FOR ALL LINKS
INCREMENT MESSAGE SENT COUNTER
MOVE CONTENTS OF SEND QUEUE TO DESTINATION INPUT
MERGE CONTENTS OF SEND AND INPUT QUEUES
FIND LAST MESSAGE ON SEND QUEUE
LAST MESSAGE FOUND
GET NEXT LINK
DO FOR ALL MESSAGES ON HOLD
CHECK AGE OF MESSAGE
DELETE THIS MESSAGE
DELETE DATA STRUCTURE
DELETE MESSAGE STRUCTURE
GET NEXT MESSAGE
GET NEXT LINK
GET NEXT DESTINATION
GET NEXT NODE
LAST NODE

s '.','.'

i.

l‘_.‘ l."l ?’"’J

27 T
“ 4 ﬁ'{':-"i-‘.,\ Q.'. "

£ r .

‘o
NI

u,' A.' g,

fi‘{ SUBROUTINE SNAP(PTR, NWORD, PIN,ISPACE)
- I EE R E R R SRR R E R R SRR R RS SRS R SRR R R SRS R R R R R R R R R R EREEERERERESE SRR
* SUBROUTINE SNAP PLACES A RECORD IN SORTED ORDER IN A QUEUE
g ¥ kK ¥ Kk K K K K K KK K K K K Kk kok ok kok K KKKk kKKK KKk KKKKKKRKKKKKKKKRKKKZKXXKKNX¥KXXKX*kXX 2
* INPUT "
* PTR - POINTER TO ROOT OF QUEUE k
») * NWORD - OFFSET IN RECORD STRUCTURE FOR SORT VALUE ._
$ * PIN - POINTER TO RECORD TO BE INSERTED Dl
* ISPACE - ARRAY THAT CONTAINS DYNAMIC MEMORY '§=f
’ KR XK KKK K KR KX EKKEKKREEK KKK KR KK X KKK KKK KKKKKKKKRKKKEKKRkKKXKXKXKkNXKXXX
*EMPTY QUEUE - MAKE FIRST RECORD 0L
5 +
e *INSERT BEFORE RECORD
N *INSERT BEFORE 1ST RECORD e
b ;t—-
*INSERT AFTER LAST RECORD -
. ' o
-
‘.‘;:‘
- 2
4
u
-'\. "_c
S
N
W :;.:
= b
% :
RN
. ‘~\ X
o B
141 ™

Lt ‘a8 2l val €4 I.‘I} g

o4

17
:..

I

v ~

E;f SUBROUTINE SAVE ¢

IR R EE R E RS R R E R E R R EE R E R R E R EREREE R \-P-_g

. * DYNAMIC MEMORY AND COMMON VALUES ARE WRITTEN TO A FILE Ry
p * AS PHYSICAL STRUCTURES. THIS FILE MAY BE USED TO

: * RESTART THE SIMULATION AT THE POINT WHERE IT LEFT OFF. I

XK KB RXKKKERKK KKK KKK KKK RKEREXREEREEKXKR KKK XK KX KXREKEXXKKKK XX X X ¥ XX ‘.:

‘5':: SAVE COMMON VARIABLES)

SAVE DYNAMIC MEMORY 2

(e ‘.
i & L
t
. .
by
ot o
- l. -
e "
\ LY
A
N o
v hS
& 2
- 0.-..
. X
[N e
- o0
&
o
- o

' r

<

LA

['.".

- .
Ll

.-
¢ o

e

.
5
s

.I. ";{ v-.l

nd
»

C‘.r‘.- ‘--
.

(3
(.

N T s

142

Y

)

SUBROUTINE TIMOUT(HEAD) w.

KX XX EEEXERE XK R KR EERREXRER KR KA KRK KX XXX R KKK XXX XXX XXX X KX K E XX X XX -.’b‘

* PRINT OUT EACH MESSAGE THAT HAS ITS OUTPUT FLAG SET

EEEREXE R KRR E XK KX EK XX KRN KRR XK KA XX KX R KKK KRR AX K XXX KKK XXX X XK X XX

IOUT IS OUTPUT DEVICE Y

DO FOR ALL NODES A

DO FOR ALL DESTINATIONS R

DO FOR ALL LINKS 2

DO FOR ALL MESSAGES ON HOLD o

GET NEXT MESSAGE -

REPEAT FOR SEND QUEUE N,

GET NEXT LINK A

GET NEXT DESTINATION i

GET NEXT NODE oy

LAST NODE 4

N

.

e

5

"\::-‘

iy

~
»

Ol el Sl Al oot el o O

gL

SUBROUTINE RESTOR

I E R R R EEE R R ER R R R R R R R R R R R R R R R RS R R R R R R R R R R R R R R R R R ERE R R ~h

* DYNAMIC MEMORY AND COMMON VALUES ARE READ FROM A FILE

* INTO MEMORY AS PHYSICAL STRUCTURES. THIS FILE IS

* CREATED BY SUBROUTINE STORE.

¥ % K K K Kk K A K KK KKK KK KKK KKKKKKKNK KKK KK KKKKKKKKEKKE KK KKK KKK kK KX
RESTORE COMMON VARIABLES

RESTORE DYNAMIC MEMORY

s PR

.............................
........................

........
.............

lc)i

SUBROUTINE RULEIN
EEXXEEXRE TR XXX KREXR KRR KAX R KX XK KEIXR XX KX XK XXX E XXX XL X R XXX XK X X K K X X
* CREATES OUTPUT MESSAGE PROCEDURES AND REQUIRED INPUT
+ MESSAGE TYPES FOR EACH NODE. ALSO CREATES THE GENERIC
* OUTPUT MESSAGES FOR EACH RULE. GETS DATA FROM
+ COMMON/RULE/ SET BY BLOCK DATA RULES.
%K %k Kk ok X K ok K 3k ok ok ok kK K ok K K KK K XK K K KKKk KK KKK KKEXXERXKKEKEKEXXKEXXEXEXEEX KX K KX
INCLUDE READ RULE DATA
DO FOR EACH PROCESS RULE IN BLOCK DATA
CREATE OUTPUT MESSAGE QUEUE
CHECK EXISTING QUEUES FOR THIS RULE NUMBER
NEW RULE
RULE EXISTS, SET POINTER & SKIP CREATE QUEUE
FIND NEXT MESSAGE FOR THIS RULE
PUT MESSAGE ON QUEUE
GET MESSAGE STRUCTURE
o GENERIC MESSAGE COMPLETE, GET NEXT MESSAGE
0 OUTPUT MESSAGE QUEUE COMPLETE
DO FOR EACH NODE OF THIS TYPE
. GET RULE STRUCTURE
3 DO FOR EACH MESSAGE REQUIRED FOR THIS RULE
FIND NEXT INPUT MESSAGE FOR THIS RULE
CREATE INPUT MESSAGE STRUCTURE
% GET AN INPUT MESSAGE STRUCTURE
¥ INITIALIZE INPUT MESSAGE QUEUE
END OF INPUT MESSAGE PROCESSING
-, GET NEXT NODE
] END OF NODES
GET NEXT RULE
END OF RULES, PRINT RULES OUT

.....................

..........
......................................
..
-

LR S

.
Ry

s

s
oY
s

v
.
.

SUBROUTINE RDRULE
I E R SRR R ERER RS R R R R R R R RREESRE R R R R R RRERRER R R R R R RERRER,
* THIS ROUTINE READS THE THREE SETS OF DATA THAT MAKE UP
* THE COMMMAND POST RULES.
EXEXEEEXEEXEXEEREXREXRXKXRKRKEXEKEEXREXEXREEEXERRKEE XK KKK K KKKEKXXXE XXX XX¥
READ IN THE PREAMBLE DOCUMENTATION
READ THE RULE DATA SET

READ RULES
READ THE INPUT MESSAGE REQUIREMENTS

READ INPUT MESSAGES
READ THE OUTPUT MESSAGES

READ OUTPUT MESSAGES
END OF RULE INPUT

I E SRR SRR RE SRR R SRS ERER R R R R R R R R R R R R R R E R RN RERREESRE]

* PRINT OUT RULES

I EEEEEEEREEEE R R R R R SRR E R R R R R R R R SRR R R R R R R R R B EREERRSESN:

IOUT IS OUTPUT DEVICE
DO FOR ALL NODES
DO FOR ALL INPUT MESSAGE TYPES
DO FOR ALL INPUT MESSAGE LISTS
NEXT INPUT MESSAGE TYPE
PRINT OUT GENERIC MESSAGES
GET NEXT MESSAGE
GET NEXT POMP
GET NEXT NODE
LAST NODE '

SRS

o~

-
‘l\l'

A

?"

>

S
S)

A

e

VN

[.3
1o

15
ib‘ . SUBROUTINE RULPRT

L'\‘ XXX R R R X R E KX KKK KKK K KKK KK KKK KKK kK KKK KKKKKER KKK KKKKokKNKIKHKD?KDINKDZRSZLRDHKDINKD>NSH K \

* ECHOES OUT THE INPUT RULES vl

KX R KR KK R KR KKK X R KKK KX K KKK KEKKR KKK KK OkKKR KKK K KKKk XKKXEXKXEXXKX¥XXX¥XX '!_;

o DO POR ALL LEVELS 5T

DO FOR ALL PROCESSES e,

DO FOR ALL INPUT MESSAGES

LA
s

Lng)
.
L 3

b, 1
b
‘o
.
PN -~
e 2
..‘. ‘..
- » -
. .
. =
N
'v.\
l.‘-
.
L} -
»".
.
w =

&
LY
'
., [&
o) LS
‘o t‘
e
X
\ - 1
o 2
-, "
~ s
Y a
. ‘.
v"
F
- " :

\
N
.t AY
o ~

. 147 ~
~

[

o SUBROUTINE LIMIT

I EE R RS REREREEE SRR R EE R R R R R EE RREREERERSSSES

S P

. * LIMITS THE MESSAGE TRAFFIC ON EACHE LINK TO THE TWO WAY MAXIMUM
! * CAPACITY

X %k ok %k %k K K K KK ok ok KKKk KK KKKKKNE K KX KKK KKKKKKKKK¥EXKKKKKIKXNXOKIKXIXSKKOHKDIKXSK XDINDIK

4

DO FOR ALL NODES
DO FOR ALL DESTINATIONS
TEST IF LIMITING HAS BEEN DONE FOR THIS DESTINATION
SET LINK RECEIVER
SET RECEIVER'S DESTINATION

[o
A

Be 7o D I W XY

F DO FOR ALL LINKS)
" INITIALIZE COUNTERS N
. FIND RECEIVERS LINK -
F DO UNTIL CAPACITY USED i
N CHECK PRIORITY OF BOTH MESSAGES 2
TOP OF SEND LOOP
- GET CAPACITY FOR MESSAGE A
o CHECK OTHER END OF LOOP ~
GET CAPACITY FOR MESSAGE X
- BOTH QUEUES ENDED IN CAPACITY .
' :‘ LINK CAPACITY EXCEDDED g
CORRECT LINK CAPACITY USED

4 MARK THE END OF BOTH SEND QUEUES
x PROCESS BOTHE QUEUES TO HOLD QUEUES ®
- MOVE EXCESS MESSAGES TO EHOLD QUEUES 3
PRIORITY CHECK -
v PRIORITIES SAME, CHECK CAPACITY
i PUT MESSAGE BACK ON SEND QUEUE
END OF CAPACITY RECHECK
END OF EQUAL PRIORITY CHECK
PLACE IN APPROPRIATE QUEUE
FPIND DESTINATION
FIND LINK
] RESET FLAG
- GET NEXT MESSAGE
END MESSAGE MOVES

'.-"’...‘-:

v s rY v, r

VRN AR i'_v (o

» INITIALIZE FOR SECOND PASS

. GET NEXT LINK

i GET NEXT DESTINATION

- FLAG BOTH DESTINATION QUEUES AS COMPLETED

e GET NEXT NODE o

. LAST NODE N

.- ‘:.

o N

o =
3

N ;

B

]

I’

[
' "
]

148

:"‘l""l'

oy B2

r .
.0,

B4

SUBROUTINE POUT (MEMORY, NUM, LENGTH)

KRR E R AR AR R KRR R R E R R AR KK R A R KK KK KRR AR KR A AR KK KKK KRR K XA KKK KX AKX KR KK R &
* SUBROUTINE POUT PRODUCES A SNAP SHOT OF PART OF DYNAMIC

* MEMORY

* 3k K Kk X K % Kk Kk K ok % Kk %k K ok ok kK Kk koK K ok ok Kk ok kK Kk K K KKk K KK KKk OK X KKXKKKNXRXKKKKNXKX¥KXXX

149

A x

)

v -
[K

A | R

Vi s

r IR

AAL LS

X

vt
"".v .

»

Vo

Ly

-~

b “'

2 . ","‘r

e,

R M
. .
AN

.

L3

‘, o"
(K

L ol
e

[N S B
NS |

por ool

AAN

'.
o«

A
E N

=,
&3 SUBROUTINE MAP !
t\\t*tttttttt'*#tt‘tt#'*tttt-#ttt"**t‘*****tt**#t*ttt##t#‘t#t-t*tltt*tt*ttt#t* v -,::
* SUBROUTINE MAP COMPUTES THE FORCE RATIOS BETWEEN RED AND BLUE FORCES Ry
*, DESCRIPTION OF INPUTS FOR RED FORCES ARE
i NTRJ=NUMBER OF TYPES OF WEAPONS-RED <
* NAMER(J)=NAMES ASSOCIATED WITH EACH OF THE NTRJ WEAPONS ;
. NTCR(J)=NUMBER OF TYPE-J RED WEAPONS (TYPICAL CASE) ¢
S NR(J)=NUMBER OF TYPE-J RED WEAPONS (ACTUAL) ~
" ER(J)=ENGAGEMENTS, PER TIME PERIOD, FOR EACH RED TYPE-J WEAPON N
‘' ALTCRB(J,I1)=ALLOCATION (TYPICAL-CASE) RED AGAINST BLUE ad
*F' PKRB(J,I)=~PROBABILITY THAT RED J KILLS BLUE I GIVEN ENGAGEMENT A
*t" DESCRIPTION OF INPUTS FOR BLUE FORCES ARE h
x NTBI=NUMBER OF TYPES OF WEAPONS-BLUE ;
o NAMEB(I)=NAMES ASSOCIATED WITH EACH OF THE NTBI WEAPONS 2
e NTCB(I)=NUMBER OF TYPE-I BLUE WEAPONS (TYPICAL CASE) T
* NB(I)=NUMBER OF TYPE-I BLUE WEAPONS (ACTUAL)
. EB(I)=ENGAGEMENTS, PER TIME PERIOD, FOR EACH BLUE TYPE-I WEAPON =
x> ALTCBR(I,J)=ALLOCATION (TYPICAL-CASE) BLUE AGAINST RED i
x- PEBR(I,J)=PROBABILITY THAT BLUE I KILLS RED J GIVEN ENGAGEMENT o
. THE ALGORITHM IS SET UP TO ACCEPT NO MORE THAT 11 DIFFERENT W "
s TYPES. "
t&***#*tt***#t*#t*ttittlt*t!ttlt#tltttttt*tt*ttt*ttt**:*lt**tt****t****
* ALLOCATION IS COMPUTED TWICE, RED AGAINST BLUE AND BLUE AGAINST G
*-. COMPUTE THE KILL RATE MATRICES (ACTUAL CASE) -
-2 SET ENGAGEMENT RATES b
COMPUTE K (ACTUAL CASE) >
*.. OUTPUT THE INPUTS o
N
- ':’
n‘.. v
~
o
.
b .
- :(
. X
k. ..
~ ;_
’ -
- y
R
e \:
: .
:
o~ ;I.
\
o N
' 150 -,
R

L S A G o A L oS S B - . T - LT W T L LI P N
U R) 3 ., “ e [« « P N IR T AR Pt e e - RN SRS
JAS I I DI IR S AR NI R P A DOV N Sl et Tate

. SUBROUTINE ALLOC(ALBCX,NBCY,NY,NTX,NTY,AX) 2
g EXXXXEEXRKX KK KKK EE KRR KKK KK XX KK KK KKK KK KK KKK KKKKKEXEKKKKKEK¥RXKX%XKEX -t
* THIS ROUTINE COMPUTES THE ACTUAL CASE ALLOCATION MATRICES 3

KKK Kok K ¥ kk XKk KXKKKEKKKKKKXOK*KKIK*NKOKHKHKS? K KK:KkKKKkKKHKXKKKXKH¥KNXHKXZ¥KXH¥XXHKXIKHKHNXKXDHKD>NEH5K !

' ALLOCATION MATRICES ARE COMPUTED EXCLUSIVE OF METHOD SUBROUTINES. ’
-

A ~
w ! :

n‘ -
.
4 .
- -
. «
L
. .-
U te
e Ky
[<] 5
‘o t
. -
" L

3
b s "
b s Ny
b s W
b "
‘-
N
- - ".
.
kS
o=
b a
g .. 5,
-
b
o
., Ve
. . -
* .
s -
1
. »

B :

151

R A

v Tr "oy

»

kY, N
-:. SUBROUTINE COMBAT N
AN AR E R AR R R R RN KRR AR R KA RN R RN KRR KRR KK R R KRR R A Rk Rk K Rk Kk K Kk X & X g
* INTERFACE TO METHOD 4 CALCULATION OF APP AND THEN ¢

i * CALCULATES THE COMBAT DRAW DOWN

¥ %k %k ok ok Kk %k Kk Kk %k k K K k ok K K ok %k ok k Kk ok ok Kk %k K K ok %k XK K K k %k K k K K %k K kK X Kk k Xk % Xk %k K k &k k Xk kX K X K K X

DO FOR ALL NODES N
oy CREATE CAS REQUEST IF FORCE RATIO REQUIRES ::
:-:. CHECK FOR ACTIVE ATQO IN EXISTANCE o

REQUEST CAS ;
K TEST FOR RANDOM DELAY INDICATED
,_? PUT MESSAGE ON FUTURE QUEUE IN TIME SEQUENCE -
'&'_'. :
’1»..
-

L
2 :
.. ‘.

L%

i i
N

:
L.

>, .

-\'. it

»

"\ &
5

. 152 =

s
r

SUBROUTINE EIGENV(RB,BR,M,N,VR,VB,6ALAM)

L4

4 KRR KK XX KK AR KRR KKK A KKK KR KRR R R KRR KRR R KRR R KRR KRR R Rk ok k kX % k% k ok ok ok %k % °:

) *THIS ROUTINE COMPUTES THE EIGEN VALUES AND LAMBDA FOR METHS AND 4 :
‘ K K K K K K K K %k ok K Kk kK X %k K K K ok K koK %k ok ok 3k 3k K Kk K Kk K K Kk R K Kk Kk K KK K K Kk ok Rk K K K X Kk ok k kK ok K kK ¥

(LY R

y * MAXIMUM NUMBER OF ITERATIONS TO FIND AN EIGENVECTOR IS MNIE 1

* ‘$ SMALLEST DIFFERENCE IN EIGENVALUES IS EFCE.

b SMALLEST ALLOWABLE DENOMINATOR (TO AVOID DIVISION BY ZERO) IS EPSL ;
* &
‘K-. N

X 5

T *_‘. -

: ;

¥ ,i

y :

g "o f

.. ::\ ‘:

S

: X

L N

. N
o
L} :-/', _
. -:' :\
& -
&

A N

- < ‘w

S

: >

.. 153
N
’ R

............ N S AP Y

PRS- TS WY Nl Y Sy UL R S TR N A

-y
il S 4

B

¢

&

S

*

Lok

o

SUBROUTINE INPUTC
Bk KRRk K €K KKK KKK KK KRXK KKK KKK KKK XK KKKk XKKKKKKXKKXKKXKXKXKKXXXXX
* INPUT COMBAT VALUES
LCMBT - TYPE UNIT IN COMBAT
MTIME - TIME INCREMENT FOR COMBAT CALCULATION
FRBCAS - FORCE RATIO, RED/BLUE LIMIT FOR CAS
NODE - UNIT NUMBER

POSR,POSB -~ POSTURE OF UNIT,0 = RESERVE, 1 = OFFENSE,

2 = DEFENSE, 3 = RETREAT

NR,NB - NUMBER OF COMBAT SYSTEMS

* V - INITIALIZED TO 1. FOR EIGEN VALUE BEST GUESS
XK KKK KKK XKKRXKKXKKRKKKKKKkKKXKEKKRKEXXKEKKKkkKKKKKXKKXKEKKKXXkKX
READ IN THE INPUTS AND PRINT THEM OUT

READ IN PREAMBLE DOCUMENTATION

READ IN GENERIC RED UNIT DATA

READ IN DATA VALUES

LR R BRI I

154

.
S 'I- d
LI

'v':\".’ \

v

ARG

St

L]
JORA

A
-t e

3 q - ;. ' -~ - X P ry P
D R A A A 4 A ST PR A S St S £ 0 TN B A e RN BN LA TR A AR AN A i a0l il it arl AR i o & e Wa @ T HACRYUN -

e,
-~ SUBROUTINE KILLS(EX, PKXY,ALLXY,J,I,EAKXY)

=S KR KEEEREEERERR KKK KW kokok ok kKK KK K KKK KK KKKKKRKKKXK-K% KKK KKK K KX KKK XXX

* THIS ROUTINE COMPUTES THE KILL RATE MATRICES

Xk k¥ ok K kK K R KK K KKK K Kk k ok kkokkk Kk Kk kKK KK KIWKOKkkKkkx K XKI KIHK>KZKKXHKkKZEKZH *XHXH K*%kSZ%X

THE RATE WEAPON X KILLS WEAPON Y IS A PRODUCT OF ENGAGEMENTS, ALLOC

*

[

* AND PROBABILITY OF KILL FOR THOSE WEAPONS. A
& R
‘i..\‘ 1
- t

&
" -
o
i &
N
3
',.\
. ',.'\
.. '
- 0o
N A u" .
. 5
'V - .\ ‘
.;.
]
T P
]
~" ‘\.
Y o

)

L1
i
[d

u‘;‘ -
%A SUBROUTINE METH4 s
< EXEKEXXXKKREKAXXXXX KKK K KR KK B EKE X RKX XXX KKK KRR RX XXX KR E XX E X RKERE X k& XX ‘—:1-
* SUBROUTINE METH4 CALCULATES THE FORCE RATIO w1

Kook ok K KK K R Kk K K ok ok ok ok K Kk ok kK K K K Kk %k ok Kk kK ok ok ok k Kk K K Kk KK KK KK KKKRKKKKKKXXKXKKXY¥

SET EACH ELEMENT OF THE BEST GUESS ARRAY TO 1

L I B R R 4
&7

e |) |

e v
v
LN v é
.%
- [
- »
.. ‘e
" N
. oy
-'.‘
<& .
‘. v
l‘ * 3
< N
=3 i
o
-)
~s e

»
3

g ‘-’-::‘-?" oy

-

- LY
-~ ,
~ hl
-
\.
[}
f ’.:
ke
-ty
0, RS
"‘.u -.
S
L RY
~a .::
) <
- . fl
B
"
= 3
b
- {
'Ni s
u AW
'.-‘ “-'
-, "
o

v 156 o

ES SUBROUTINE MPROD(A,B,N,M,L,R)

EEREXKEREARE R TR KKK KK KK KK KRKE KKK KX KKK XXX XK XK KRR R R KKK KKK KKK EE R XK RN

* THIS SUBROUTINE MULTIPLIES TWO MATRICES.

n %K K R K K K K K K K K K K K K K K KK ok K K K Kk KK K ok K K K ok ok K K K ok ok X K ok ok ok K ok ok k kK kKKK XKKKXXXXXN
[N

i, ,‘: r_; .,

[

(SR

157

A 3
D RF Bl e N

et ‘.
P I 3% S I N

* SUBROUTINE PRNT(NTX,NTY,NTCX,NX,NAMEX, NAMEY,VALX, PKXY,EX,
XK R KK KR K EEXEE KKk KKK XK KEKXKKEKEKKEKKEKKkKEKKEERKEXKEKKEEXKKKXKKKRKXKK XXX
. * THIS ROUTINE OUTPUTS HEADINGS AND CONTROLS THE PRINTING OF THE
!; * VARIOUS VARIABLES
*t***********t*********tt*********t#{**************#*************
* OUTPUT NUMBER OF WEAPON TYPES
*% OUTPUT NUMBER OF EACH TYPE OF WEAPON
*s OUTPUT THE TYPICAL AND ACTUAL CASE NUMBERS
* OUTPUT THE AVERAGE NUMBER OF ENGAGEMENTS
* OUTPUT TYPICAL CASE ALLOCATION
5; OUTPUT ACTUAL CASE ALLOCATION
OUTPUT THE PROBABILITIES OF KILL

-
-
»
-
-
e
-
.
.
-
2

v
- .
: 5
F: SUBROUTINE PRNT2(NAMEX, PARAM1, PARAM2,NT,FMT1,FMT2,TWO) iR
& IR R R N R T N s s s i1 -3

* THIS ROUTINE IS USED TO PRINT 1 DIMENSIONAL ARRAYS

I E R ERE RS ER R E RIS E RS E R RS R E RS R S R SR E R R R R R R R R R R R R R R R R R R R E R R R REE RS

LUPLIM IS THE TOTAL NUMBER OF ROWS TO PRINT

L .
* TWO IS USED TO SIGNAL WHEN NOT TO PRINT A SECOND ARRAY {
[;’3 o
Ld)
’ 2
" .
N iy
\’
' \"
%
i::-' R
~o ‘f
2\
:-
(4

o
.
f

a4

e 8 Nty

“e 2
.’

-

L Je
’

0-.'
-
. ..:.
"'
- --
<
- e
N, b
~° N
— A
. h
o b
[<.
-t l"
.
. -
X KA
-
£ 2
M
- +
.-Q '5

. !
159 &

......

O

LR K K R R)

78

R) ‘.w\

‘AI"AIJ‘ ‘

v
L

SUBROUTINE REPORT

A SR R R R R R R R R A S S P R R A A XK B E R AR A AR A RN N R AR A KRR R KR K F F KA KR A XK R KK X R ¥
* THIS ROUTINE OUTPUTS THE INPUTS AND SELECTED COMPUTED VALUES IN
* A FORMAT

tt**#****t*tt!*.*******t#******************#**t**#************

OUTPUT THE TITLE

OUTPUT THE INDEX WEAPON
OUTPUT THE BLUE VALUES
OUTPUT THE RED VALUES
OUTPUT K (BLUE AND RED)

160

i ')\»

TN S S
JORAAR

SUBROUTINE TABLES(SIDEOQ, SIDED, NAMEX,NAMEY, NTX, NTY, PARAM)

Bk KK K KK KKK KE R KKK KKKk KkKRK KK KK KKK KK KKKKKKK KKK XK EENK KK XX XXX

* THIS ROUTINE IS USED TO OUTPUT 2 DIMENSIONAL ARRAYS

® kK X KKK Kk kK Kk kKKK KKKk kkk Kk kKkkKKKO KK KK KHKHR¥KHKNXNKHNKXHKKX XHXXXKXXZXX

LUPLIM IS THE NUMBER OF COLUMNS TO PRINT

161

‘. (Y

“> W W

[/

Wt

RN

e
W' Sy L]

 n)

FA -’ .,

A

X

)

o

e S 2w L
P

TIIATS FR

P* 4
= .
A _ o
*» SUBROUTINE AIROPS : = Y
. EEXEXREEXEEXXX X R KX RE X KKK KKK KAk KX KK kKKK KEEKEKKKX KKK XX -, ""-‘
g * REPRESENTS THE WOC AND CRC ACTIONS S
¥k &k Kk Kk k Kk %k kK Kk K % ok Kk ok ok kok K Kk K KKK KKKKKXKKKKIXKXHKKHKHNKKIHKIEKK™NKOKXH KHK>¥kH¥kX:%
D t.***tt**t**:Irt#**************************#********************** "
MAKE READY QUEUES CURRENT ;
» DO FOR ALL CRC'S e
o DO FOR ALL WOC'S ()
REDUCE READY QUEUE "
m GET NEXT A/C READY QUEUE —
».f. % %k % % %k ok &k K k Kk k Kk %k Kk ¥ K k k k Kk k k Kk Kk k Kk K Kk K K K %k k ok k %k & k k k k KK kK k XKk Kk kXKkK
s SCHEDULE MISSION TAKE OFFS o
. CHECK AIR SUPPORT REQUESTS od
v CHECK FOR LAST USABLE TIME FOR ATO o
N FIND A/C TYPE X
CHECK ENOUGH AIRCRAFT AVAILABLE
o CALCULATE NUMBER ASSIGNED ¥
PUT ATO ON CRC'S LIST A
MAKE MESSAGE FOR CORPS -
PUT MESSAGE ON FUTURE QUEUE N
& WRITE ACTION ON OUTPUT o
AIR REQUEST WILL NOT BE FILLED
SET NUMBER OF AIRCRAFT TO ZERO
e REMOVE FROM WOC'S ATO LIST X
SEND MESSAGE TO CORPS 0
GET NEXT ATO oy
oy ATO USED CASE)
B ATO NOT USED CASE =
END OF THIS WOC SCHEDULE ACTION, PRINT STATUS 4
- GET NEXT WOC ¥
- LAST WOC FOR THIS CRC COMPLETED SCHEDULE ~E
- SET CAS FOR THIS TIME CYCLE oy
DO FOR ALL NODES el
n CHECK FOR COMBAT TYPE UNIT
SET CAS SORTIES TO ZERO
GET NEXT NODE e
CHECK FOR WOC SOURCE 5
CHECK TIME ON TARGET R
SET CAS SUPPORT A
- INCREMENT CAS SORTIE COUNT
- RESET UNIT AIR REQUEST TO NULL >
SCHEDULE SORTIE LANDING R
FIND WOC o
- GET NEXT ATO ~
w LAST CAS SUPPORT PUT IN COMBAT, GET NEXT CRC pe
LAST CRC SCHEDULED
3
- 4,
E}; “(
a 162 i~

o
2a E’
-3y SUBROUTINE MAKMSG(MTYPE,ISEND,PNODE,IDEST,I1,I2,I3,ICAP, iy
i I B R R RS R EES RS E R R R RS R R R R R R R R R R E R R R E R R R E R R R R R R ‘_-;\.
* MAKE ATO MESSAGES s
n * INPUT :
~ * MTYPE MESSAGE NUMBER ~
* ISEND UNIT TYPE OF ORIGINATOR ~
E:: » PNODE POINTER TO WOC'S NODE V.
. IDEST DESTINATION UNIT S
* I1-I3 COMMUNICATION LINK TYPES o
- ICAP COMMUNICATION CAPACITY REQUIRED '
I PATO POINTER TO AIR TASKING ORDER "]
* * IORIG ORIGINATOR UNIT (98 IS INTERNAL) ~
.. * OUTPUT 7
s PMSG ~ POINTER TO MESSAGE
t‘: IR R R R R R R R R R R R R R R R EE R R E R RS "_’
* OTHER MESSAGE ELEMENTS SET
¥ * CREATE TIME TO NOW
Y. * MAXIMUM AGE TO 3 o
* PRIORITY TO 1 o
.« * OUTPUT FLAG IS ON b
‘.:" I R E R R AR RS R R RS R R R R R S R R R R R R R R R R R R R P R E R R R R E R E R R EE R R R »::
“ IF NO RETURN NODES, USE SUPPORT UNIT
. GET ALTERNATES FOR MESSAGE -
e
i g
"l _\
\--
"
.
o i
~" .;'-
-
- o
o
wX o
: ol
& N
A ~
\q'
] .
P v
n 163 K8

‘ ,
*: SUBROUTINE PRTATO(TITLE, PATO) 2
hd t#******#t*t#l***t#**#t#**tt***#********J*‘****l***‘**t ".

) *+ PRINTS AN AIR TASKING ORDER =4
u *****t#***#*******#*********#****t***#****‘*****t******

s
'y
rP

)
s
L)
.
:‘.‘- :..
-
e
4, K
LI -
", -
(v
.“T -
- R
1—_' <«
R '\-
h\-
.."
[y
A KY

&>
A\t

. .‘
vy
y »
':;" __.:

. =
N

i i “
Ao ’-'
c o
r_"-

Py

-
" .
e,
sy
,
v. “..
. -
N LAY
. e
.
N
-
. n
» %)
- ._.'
- - .
‘.- [
- 2
. 2
h ¥
- o N
s .‘:\
.-'ll ’.‘. |
. =
-
l‘-
N
vt ~.:
<, e

g

, ;

o e

T o
N

164 :}i:_

. Tw . et Lt
2N ..,
v

" l .

AR

vy N el e 8 el Rl Rt R A . A . A ad's, RS B8 Bt Rt B8 P ‘ap p B oL ot Bal fad e Bt B2t B2t Aut Bt . . g

~

\ oy

SUBROUTINE STATUS(TY1S, ICOUNT, PREADY)

IR R R R R R R R RS R R E E R R RS E R R R E RS R RS R R RS SR R R EREEE R REE R RS RERERRERES S

* PRINT WOC AIRCRAFT STATUS

KEEKEXKKREKXR XXX KKK X XXX KRKEXXEXEEKEKKK KKK XKEXERXXKKEXXKKE KK XXRX

?Ith

e

s |
S

Ao g

s
D

0

n

vv‘

-~
L

s

*n

<

L
o
Y
1)

" Ny Ny %
~

--A &
. "
S
A‘.\-
i .‘ |
s - ."
LA
-
[_'
—— .
. .__:.
b._
:.
'.- k-'-
"o‘ §.~ -
oy v
-, v,
) . »
o "1_
o .‘.'
- A
3
N
-
. .,
N e
A -
- '.
l.. .

165

i

NI YL S U L I I SRR N e et e e LI e
CYRCAPR S e e e L e s e e e e e e e s e e IR . <. R
I AR PO AL I B P RN, D T B D R S R SR P P PP I IR TN

hd r
“+ SUBROUTINE INPUTA =%y
e % K K Kk ok ok K %k XK K K K-k -k MR-k K K K R K R K K K KKK KKK kKKK KKK K KKK EKK KKK XX ,_p-‘*.‘
* INPUT AIR OPERATIONS VALUES =
8; * ITYPE - TYPE OF INPUT LINE (CRC, ' ,END) =
* NODEC - CRC UNIT NUMBER -
* ATIME - ALERT RESPONSE TIME 3
>~ * ETIME - TIME FROM TAKE OFF TO TARGET o
[2 * MINAC - MINIMUM NUMBER OF AIRCRAFT ON MISSION -
* PS - PROBABILITY OF SURVIVAL OF CAS AIRCRAFT A
* NODEW - WOC UNIT NUMBER
gl * ACTYPE - AIRCRAFT TYPE &
* * ACTIME - TIME AIRCRAFT READY FOR TAKE OFF 4
* NUMAC - NUMBER AIRCRAFT READY FOR TAKE OFF n
¥ * COMMENT - DOCUMENTATION AND REVIEW i
) kK Kk Kk Kk K ok K K X Kk K K K ok k kK Kk KKK KKK KKXKKXNKKKKXKKIKXKHNKIHKOHKRDHNXI™KK%RXIHKHKRXK*X¥NKSX .";

* READ IN THE INPUTS AND PRINT THEM OUT
; READ IN THE PREAMELE DOCUMENTATION b=

“. READ IN HEADER DOCUMENTATION o

i FIND NODE -

- CREATE STRUCTURE FOR ALLOC "

. STORE PARAMETERS IN ALLOC o

% READ IN THE HEADER DOCUMENTATION <
GET NEXT DATA LINE

s CREATE CRC g

W READY STRUCTURE e
GET NEXT AIRCRAFT ENTRY -
- GET AIRCRAFT READY BLOCK]

i MAKE NEW READY BLOCK . X
CREATE RDYQ BLOCK g
. END OF INPUT FOR AIR OPERATIONS -::
o DEBUG PRINT OF CRC AND WOC STRUCTURES :.;
a :
o
. N
- N
) S
l‘,} ‘
':'.-_f '
N
L };.
N\ .
O 5
& :

LI
- -

v ot
a Lo

166

‘% SUBROUTINE MINLIM(PNODE,MFLAG) z
- Xk kK K Kok X K K R K RAK X N K KK KKK KKK KK K Kk KKK K K koK kKKK KKKKEKRKKXXKXXKEKKXX -
* SUBROUTINE MINLIM LIMITS THE NUMBER OF MESSAGES THAT MAY = N
]l * ENTER A NODE AT ANY ONE TIME -
A %k % % % % %k 3k X % ok X K 3k Xk K %k Kk %k %k %k %k % 3k %k K X%k %k %k X% K %k % XK %k %k %k ¥ k %k X %k Kk %k %k ¥k %k X %k %k *k %k &k ¥ k % % % X X ."
~ ZERO OUT MESSAGE IN COUNTERS Ry
t- COUNT MESSAGS BY PRIORITY €
" DON'T COUNT ALTERNATE MESSAGES ¢
DETERMINE CUT OFF PRIORITIES %
- REMOVE MESSAGES FROM IMQ BY LOW PRIORITY .

DO NOT MOVE ALTERNATE MESSAGES
DO NOT MOVE MESSAGE WITH ACCEPTABLE PRIORITY
REMOVE THIS MESSAGE o
CHECK MESSAGE OUT OF AGE Ry
CHECK FOR MESSAGE PRIORITY BELOW DELETE LEVEL -
DELETE THIS MESSAGE

- CHECK FOR MEAASGE DATA =
2 RETURN DATA SPACE -
RELEASE MESSAGE SPACE o
- PUT MESSAGE ON HOLD QUEUE %
< NEXT MESSAGE WHEN KEEPING MESSAGE ON IMQ b
- GET NEXT MESSAGE

END OF IMQ e

RETURN MESSAGES ON HOLD TO IMQ o

.

(N

N

()

-
'.'

:
A
[n.",
_. =
.h- . L \
r-:‘-' A
n 2
nr,
_. - '\v
1.- .‘\‘
-~ Y
Y -
av]}
bt <
..
-:': k’
L) e -
L w
2 o
'.: o
l‘ \I
N
R !-\ \
.‘\J :.\ g
lf &S
o -
;"‘ [
-\ \-)
167 N
H -
.'_\:
=)
1

....................... .-_;.-_’-_'.‘~‘-"\' ,'-...-'_.‘_.. SRR . P B \.‘_‘.._A _,__.__.__.___‘ e s _'.___ -~-_|',‘,
L -
L

. T a & . o Wy W W T e W - o -
S SN AL S AL Al A A N A e A e A e Sl S Sl Pl Sl A A Tt W S Ak -5l A e AS S B A w2 $. fon bon fun tNa S0 B AN Be 0ob S Ao 2 B]

!% SUBROUTINE TINPUT

KK KEKKEKXEXKEREKKEKEKKXKKEEKEKEEXKKKKERKKKEKKE XK KKK KRR KK KKKk KKK

R

STl M MERE S S S K S TR

. * INPUT CHANGES TO CHARACTERISTICS DURING TIME T
l] * USES UNFORMATTED TEMPORARY FILES 11, 12, 13
) X K K K K K Kk Kk K Kk Kk XK ok k Xk %k kX kK Xk ok ok K k Kk k ok Kk Kk Kk kK Xk ok kKK Xk KXXKKXKXDINKDZ KDXDIZ KXDINXDSZX
GET FIRST MESSAGES
&a CHECK FOR CURRENT REINFORCEMENTS
2 CHECK FOR CURRENT NODE CHAGES
CHECK FOR CURRENT LIMIT CHANGES
my CHECK FOR CURRENT LINK CHANGES
'~ CHECK FOR CURRENT ALLOCATION PARAMETER CHANGES

FIND NODE
FIND ALLOCATION STRUCTURE FOR TYPE MSG .
::‘_. END TIME T INPUT FOR THIS TIME INCREMENT -'.;
’ N
i

TN,

B
s

'
Al
N
- .
~

.::: !
A A
'ﬂ

. ;
¢ i
168 :

-

‘n

¢
3 . » .,

N
»d
>,

o
s

o

T T

€

SUBROUTINE CHFORC(NRC,NBC)

I E R R R RS E LSRR EE R REERR SRR ER R E R R R R R R RS R R R RS RSEEREREER]

%*

x
x
*
X
*
*
*

INPUT COMBAT VALUES IN NRC AND NBC
1 - TIME FOR UNIT REINFORCEMENTS OR POSTURE
CHANGE
2 - UNIT NUMBER
3 - POSTURE OF. UNIT,0 = RESERVE, 1 OFFENSE,
2 = DEFENSE, 3 RETREAT
4-14 - NUMBER OF COMBAT SYSTEM REINFORCEMENTS

I EEREEERE SR EREEEEEEEEEESEE RS R R R R R R R R R R RERERE RS’

169

phmy

Ei*l SUBROUTINE CHLIM(LIMIT) .- r
. = ***#**t****************.*t’**—***#**‘I*****‘ﬁ~¥*t#“*"l -
* CHANGE INPUT OR OUTPUT MESSAGE LIMITS AT A NODE <
ﬁ ******’****************************#*****t**#***ti#
FIND NODE
N
'.
&
?.-’ ::
~ 4
: :
r ‘
:?, .:-
T, o_'
N i
ol
t
: 3
£ -
5 -
e 7
) .
: X
~ ~
o
-t ,-\
I
5 x
- 170 "

¥
)
4
,
.
.
X
(3
3
’
1
:
5
1
:
&
3
J
:
:
o
4
;
LSS S
..

. : -
‘:'J. - f?’f’.‘.

.
i fg SUBROUTINE CHNODE(NODET)

I EE RS EE P EEEEEREERRE R RS R EREREE R R R R R E R R R R R R R R R RS

L)

-

* CHANGE COMMANDER OR SUBORDINATE NODE

u XX R AR R R E R B R B R R R KRR KRR K KRR KKK KRR R KKK KR KRR KK KKK KKK X

. wN %
.?,w.v"- oo

)

R
) W
_'&-“';".r"r ‘.(

r ?
.

&
*

1)

L®
- l.,,
e

.
Q.. .‘l

.
I.' -
- N

-

.

T

LIy

-

h]
,

-
-
W
e .
‘e -
-~ -
N N
¢ B
A
e
-
b
P
<, S
T
Ly
4 . "
v, ~
»
A "
., "4
.. 3
)
b
" a
* e
.
A
o
.
o, =
- Y

l.:‘ .l
N i
') F‘-
) X
.)
W
~ - x
L] - ™
) e
) 171 &
o

W
. 1y
E “
__'i
J
- ¥
t}- SUBROUTINE CHLINK(LINKT) - o
- XX XXX ERREKETERKE KK EKRKEX KKK KE KKKk KRR KKKEEEA KKK RK R K KX K ‘.-‘
- ‘
, * CBANGE LINK CAPACITIES DURING TIME T 0L,
n Kk K X K K K K K KKK KK KKRKRKKKEKKFEREEKXXKXKERKKEKKEKKXKXKKKXKXXKkKXXX
IS
-
A
3 :
o,
g v
o] Y
\‘.
. Y
[-
O
.t i‘
-
<.
5 ;
o .‘,‘
', 3
-, ce
b - ‘:L
i L’.
w3
. A
-
>
“t
oS
:': S
e
@ .
> N
P: ::“-
o o
[
o ;'_'-‘,.
. ‘_:
172 o

€

G ;
]
. SUBROUTINE MOULIM =
[t XXX EEEEXREXEKRKEXE X KKK E AKX ETRKX KKK X KK KKK KKRK K ¥ KKK KKK KKKKKXK K XXX ?’
_* LIMITS GENERATION OF OUTPUT MESSAGES AT EACH NODE BASED ON =l
n * THE NUMBER OF MESSAGES REQUIRED TO BE PROCESSED AT THIS NODE ‘
! + AND MESSAGE PRIORITY. 5
. CALLED BY: SUBROUTINE NODE AFTER PROCESSING DECISION ,
S RULES BUT BEFORE MESSAGE PATH ALLOCATION. {
* % Xk Xk M % Kk Kk K ok %k %k ok ok Xk 3k ok Xk XK %k X X% Kk %k %k %k X %k %k %k ok ok ok k ok k % % ok &k %k Kk KKK K KKK KKK KKK KX K XXX ¥
’
(3

DO FOR ALL NODES
DO FOR EACH MESSAGE ON FUTURE QUEUE
CHECK TIME ",
MOVE MESSAGE TO HOLD QUEUE
ERROR IN ROUTING
. DESTINATION FOUND
o FIND LINK TYPE
ERROR IN ROUTING
o GET NEXT MESSAGE

b:-jt**********t*************#t********************

~

d CLEAR COUNTER ARRAY
DO FOR ALL DESTINATIONS -
DO FOR ALL LINKS

-

KGR |

e
.3

[Tt SN
»

OO0,

>

o
L COUNT APPLICABLE MESSAGES ON HOLD QUEUE =
DON'T COUNT ALTERNATE MESSAGES o
DON‘T COUNT MESSAGES TO BE SENT IN THE FUTURE -
COUNT APPLICABLE MESSAGES ON SEND QUEUE AND MOVE ALL =
MESSAGES FROM IT TO THE HOLD QUEUE 2
., DON'T COUNT ALTERNATE MESSAGES =
B IF(MEMORY (PNODE+1) .EQ. 12)
DON'T COUNT MESSAGES TO BE SENT IN THE FUTURE s
. DETERMINE CUT OFF PRIORITIES 0
- DELAY OR DELETE MESSAGES : F
- COMMANDER AS DESTINATION FIRST 7
NEXT PROCESS SUBORDINATE DESTINATIONS .
n FINALLY PROCESS OTHER DESTINATIONS
5 TEST FOR OUTPUT »
GET NEXT NODE =3
3 3
A‘»
= .
&
- .
S
a 173 i
X

| ENERACE S e AR SRl

&. SUBROUTINE MDELAY(PNODE, PFMQ, PDEST,JP1,JP2,JdC1,dC2,

I EREREEE SRR SR RS S E R R R E R R R R E RS RS S R R R R R RS RS R R R R 2R R R R LR R EREREESE]
* DETRMINES WHICH MESSAGE WILL BE SENT, HELD (SET SEND TIME TO
* NEXT TIME) OR DELETED. PROCESSES HOLD QUEUE ON EACH LINK FOR
* THE DESTINATION.

* CALLED BY SUBROUTINE MOULIM

* PARAMETERS

. PDEST - POINTER TO DESTINATION STRUCTURE

. JPl - MAXIMUM PRIORITY MESSAGE PROCESSED

. JC1 - NUMBER OF MESSAGES AT LEVEL JP1 PROCESSED

%

*

%*

3

*

*

(& 2

JP2 - MINIMUM PRIORITY MESSAGE DELETED
JC2 - NUMBER OF MESSAGES AT LEVEL JP2 NOT DELETED
NHOLD - NUMBER OF MESSAGES HELD FOR FUTURE PROCESSING
NDEL - NUMBER OF MESSAGES DELETED
=0, PROCESS FIRST DESTINATION FOR A NODE
=1, PROCESS ADDITIONAL DESTINATION
XXX EEXEEXXEXRXEREKERXEKEXEEXE K KKK KKKKKKRKKKKORKKKKKKKEXKKREXEXXKKEKRKXXKXXK¥XKXXX
" PROCESS FIRST DESTINATION FOR A NODE
DO EACH LINK
PRIORITY MESSAGE TO BE SENT
IGNORE ALTERNATE MESSAGES
IGNORE FUTURE MESSAGES
, TEST FOR EQUAL PRIORITY
= X TEST ENOUGH MESSAGES AT LOWER PRIORITY
2 ' TEST FOR MESSAGE LESS THAN HIGHER PRIORITY
DELAY THIS MESSAGE
i MOVE TO FMQ

-

INDEX

A
[}

"

|

DELETE THIS MESSAGE
TEST FOR ADDITIONAL DATA
4 INCREMENT BACK POINTER
S GET NEXT MESSAGE

174

. P T S R S - . - . co T S
. . -
d PR “ ot A

........

T .- -' ."\ \(...';‘.‘-
oL ISR U S » ISR

-t el 06 Al N A RS AN A AN BN JARL RS A S et AR S AN u il o) Pl A i e, -

L

X
2 T

L SUBROUTINE- MSGOUT- (PNODE, POMP, POUT, PDATA, PLENTH) >
! FAXAXEEXEEREEXE R XX EEXRREKKER R KR REE X KEXEEX KX EF KRR RE XX KX X KX X K X X -
* MSGOUT GENERATES AN OUTPUT MESSAGE TO ALL DESIGNATED T
@ * DESTINATIONS
) %k K K %k %k %k Xk ok k K K K Kk Kk %k Xk %k Kk X Xk % 5k k % 3K k & 3k %k % %k *k %k % K ok Kk %k k %k k k Kk Kk %k k K %k k X ¥k ¥ %x k X .
* CALLS - GIMME, SNAP, FIND, ERROUT, RULES 5
;\: XK KK KKK KKK XX KIXKEEKKXE XX XX K KKK KK KKXKKkKKK XKk KKEKkKkEkKXXXZHKDSX X ‘\
o * INPUT |
. PNODE -~ POINTER TO NODE W
n * POMP -~ POINTER TO OUTPUT TYPE -
N * POUT -~ POINTER TO OUTPUT MESSAGE TYPE -
- * PDATA - POINTER TO MESSAGE DATA '
* PLENTH- LENGTH OF BLOCK FOR MESSAGE DATA =
. . .

I EEREEREREEREEE R R R R R R R R R R R R EE R R R R R R R R R R R R R RS R R RS RN sl

CHECK FOR COMMANDER ONLY
COMMANDER ONLY, SET DESTINATION
A DO FOR EACH DESTINATION = DESTINATION TYPE
SR CHECK DESTINATION TYPE g
GET NEXT DESTINATION N
DESTINATION FOUND
CREATE OUTPUT MESSAGE N
ENTER DATA
TEST FOR RANDOM CHANGE OF MESSAGE LENGTH INDICATED y
SET ALTERNATE DESTINATIONS N
- SET FIRST ALTERNATE TO FIRST NODE ALTERNATE '
TRY SECOND ALTERNATE g
N

ll'_‘l .

[

», 2

SET FIRST ALTERNATE TO SECOND NODE ALTERNATE
SET SECOND ALTERNATE TO NODES FIRST ALTERNATE
TRY SECOND MESSAGE ALTERNATE
SET FIRST ALTERNATE TO FIRST NODE ALTERNATE 7
TRY SECOND NODE ALTERNATE ‘ N
SET FIRST ALTERNATE TO SECOND NODE ALTERNATE
TRY SECOND NODE ALTERNATE .

. -
AL

5

] SET SECOND ALTERNATE TO SECOND NODE ALTERNATE
- END OF ALTERNATE LOGIC P~
CHECK FOR MESSAGE TRACKING FLAG o
i SET TRACKING FLAG o
- CHECK FOR MESSAGE SEND TIME AN
; PUT MESSAGE ON FUTRUE QUEUE BY TIME ”
. PUT MESSAGE ON SEND QUEUE BY PRIORITY N
N GET SEND QUEUE N
¥ FIND LINK TYPE 2
ATTACH MESSAGE BLOCK RS
o5 FINISHED IF COMMANDER ONLY o
G GET NEXT DESTINATION RS

END OF OUTPUT MESSAGES

' Y

A ET SUBROUTINE PROCES (PNODE, POMP) ¥ 4

- XXX EXXXEXZEEXEXERKXERKXXXEX XX XK XX KXXEKXR KK KX X KREXEEXXEKERKKEEKKXEE XX K ¥k

. * SUBROUTINE PROCESS PERFORMS RESPONSE ACTIONS BASED ON
! * CONDITIONS OF PROCESS RULES HAVING BEEN MET

% %k k % %k dk Xk XK %k ok K % ok %k %k ok Kk X ok ok K ok K Kk Kk K K kK K Kk KK KKKKKNXKKKKKKKXKRXXKXXDXX¥*

& AW

* INPUT ,
5 * PNODE - POINTER TO NODE ¥
ot * POMP - POINTER TO OUTPUT TYPE b
XKk K Kk K % K K Kk ok Kok ok Kk ok K KKK KKK KKNKKKKKKKKKKKEKKKKEKXKKERKKEKKKKXXK XXX t{

K TEST FOR RANDOM MESSAGE PROCESSES
o~ CASE(OUTPUT MESSAGE TYPE) X
* *TYPES(2900, 3000, 3400, 7000, 9990, 9993, 3126, 3130, 3136, OTHER) -
>

et _Jx B oy ' an o o

. *CASE(REQUEST AIR SUPPORT)

NON ALLOCATION PROCESS ,

» ALLOCATION PROCESS o

*CASE(APPROVED AIR SUPPORT)

*CASE(DELETE ATO) -
ATO REQUEST FLAG .

*CASE(REQUEST HELOCOPTER SUPPORT)

*CASE(APPROVED HELOCOPTER SUPPORT) "

. *CASE(DELETE HTO) 3
*CASE(ACCEPT STATUS REPORT FROM SUBORDINATE) -
*CASE(RECEIVE SPOT INTEL REPORT ON RED FOE) s

*CASE(CREATE MESSAGES FOR OUTPUT) "
CASE(RANDOM OUTPUT MESSAGE PROCESS))
*GET NEXT OUTPUT MESSAGE ‘
*DELETE ALL ATO’'S USED BY THIS PROCESS -

b
™
§- .".
W\ -~
'« g
- . ’i
-
- :
" : *
g
g
.:- . 3
1‘.’ R
. .:3 X
hY
o :
; :
. - *e
- .
[] Es ;
-
~ o
3 - .
- - -
- [3
"
~
! . 176 N
M
4

LIPS P

DR A Fg)
)

[

!
N SUBROUTINE ATODEL (PNODE, POMP)
y KX R KK KK KRN K KK KKK KKK E KKK KKK KKKKKKENKKKKEKKKKNKKKkKXNKKKKEKKXXX
_ *+ ATODEL DELETES ALL ATO REQUEST AND REPLY BLOCKS THAT
g * HAVE ITS PROCESS NUMBER
%k K %k ok % %k %k K K dk K %k %k 3k ok K & K XK 3k %k Xk %k Kk %k X 3k %k k k %k %k k K XK % k Kk K Kk ¥k Kk Kk K KXk XXX*K¥X¥kX5xKX ~
* CALLS - GIMME, SNAP, FIND, ERROUT, RULES ~$
K‘. ******************x***************************‘*********# -g.;:'
% * INPUT b
* PNODE - POINTER TO NODE '
- * POMP - POINTER TO OUTPUT TYPE
KN Ak kK K Kk ok K K K kK K K KK KK KK KKK KKKK KK KK KKKKKKKKEKKKEKKEKEKKEKEKX KR X ""-
~ SKIP ALL DELETIONS FOR THE WOC -
DELETE REQUESTS o
TEST FOR THIS PROCESS NUMBER *‘
DELETE REPLYS %
TEST FOR THIS PROCESS NUMBER
“ DELETE SPOT REPORTS &
s TEST FOR THIS PROCESS NUMBER s
. o
G &
i
~4d
4]
~"$-
o~
e
s
»'_:-
N
E.i:'
o
177
e e L e e e e ey

-2

v
A

-

VTR
&t

SUBROUTINE ATOALO (PNODE, POMP,POUT)

EE KR ERE AR AR KRR R AR R KR A KR AR R KRR AR KRR KRR KRR A AR KRR AR K KK X & &
* ATOALO ALLOCATES SYSTEMS TO SUBORDINATES TO

* SUPPORT REQUESTS, MESSAGE TYPES 2900, 3000, 3400

X % %k ok %k 3k %k K K 2k kX ok ok K Kk ok ok Kk X ok kA ok ok Ak ke ok ko ok kK K kK K ok kK K Kk kKK KKK KK KK K K X

* INPUT

* PNODE - POINTER TO NODE

* POMP - POINTER TO OUTPUT TYPE
* POUT - POINTER TO MESSAGE TYPE

% Kk kKK kK KKK KK KK KK KKK KKK KKKKKKRKKKEKKEKEKR KKK KKK Xk KX X KX

GET FIRST ATO FOR THIS NODE
INITIALIZE POINTER FOR INTERNAL ATO QUEUE
DO FOR EACH ATO MESSAGE
IF PROCESS MATCHES ATO, CREATE MESSAGE
FIND EXISTING ENTRY IN INTERNAL ATO QUEUE
SUPPORT NODE NOT ON QUEUE, CREATE ENTRY
CONSOLIDATE SUPPORT DATA IN EXISTING ENTRY
GET NEXT ATO
CHECK ATOQ
CALCULATE PERCEIVED FORCE RATIOS
SORT SUBORDINATE STATUS STRUCTURES FORCE RATIO QUEUE
NODE DOES NOT ALLOCATE THIS TYPE, PROCESS ALL ATO'S
TEST FOR CORRECT SET OF ALLOCATION PARAMETERS
NOT CORRECT SET OF ALLOCATION PARAMETERS, GET NEXT SET
ALLOCATION PARAMETERS FOUND
TEST FOR CURRENT ALLOCATION TIME PERIOD
CALCULATE NUMBER OF SORTIES TO BE ALLOCATED
ALLOCATE SORTIES AVAILABLE
LOG ACTUAL NUMBER OF SORTIES ALLOCATED

LT

P R L N S

vy

SN

XN,

A 1 L}
-4 ‘g ' 'a 4"!,

b ‘4
. SUBROUTINE. ALOCAS (PNODE, POMP, POUT,NALLOC, MINSOR, PATOQ) T4
r‘ K AEK K KKK KK KKKEKEKEKEKEKKERXE KK KKK KKEEXKEEKkEEEREKRKEXEXXRK XXX XX -'f
* ALOCAS ALLOCATES AVAILABLE SORTIES TO REQUESTS FOR =
" * CAS USING THE SUBORDINATES RED/BLUE FORCE RATIO QUEUE
* TO SET PRIORITY 5
K K K X ok Kk ¥k %k ¥ %k Xk Kk % ok ok Xk %k Kk K XK %k % ok Xk Kk % %k K K K k kK K K Kk &k k Kk Kk Kk kkk¥KXKXXKXXDXOD%X5%X®%X .t
L * INPUT f‘
N * PNODE - POINTER TO NODE ¥
* POMP - POINTER TO OUTPUT TYPE Wi
- * POUT - POINTER TO MESSAGE TYPE
v * NALLOC- NUMBER OF SORTIES TO ALLOCATE ’
' * MINSOR- MINIMUM OF SORTIES FOR A MISSION "
* PATOQ - POINTER TO TEMPORARY ATO ALLOCATION QUEUE -
7_'.. %k K XK K K K K K KK K K K K KKK KKK KKK KKKKOKKONKINKIMKIKDIBKINKIKIHEIHKIERNKKKEKKKKKEXEKXKXXXDIKHXK ..':.
i DO WHILE SORTIES ARE AVAILABLE
DO FOR EACH SUBORDINATE
- CHECK NUMBER OF SORTIES]
- ADD SORTIES TO STATUS .
GET NEXT SUBORDINATE o
. SEND REQUEST DENIED TO SUBORDINATES -
o CREATE 7000 MESSAGE WITH ZERO SORTIES o
- GET NEXT FRQ =
RESET NUMBER ALLOCATED TO ACTUAL NUMBER ~
. DELETE ALL ENTRIES IN TEMPORARY ATO QUEUE 2
o0 ‘N
o
%)
) -
e
U.Ir
N .
_
- <
I.Q U
ﬂ Y

179

le

L‘l

LS A N

.

R
[N I S

3
“ .

‘.
-t

SUBROUTINE PRATIO(PNODE)
EEE KX EXEKNX XXX KRKERKEKEKXKEXKKEEEKEKKKKKKKKEEEXEYKEKEELTEREXKE XXX XXXXXK
* PRATIO CALCULATES SUBORDINATES RED/BLUE FORCE RATIO
* AND ENTERS IT INTO THEIR STATUS STRUCTURE
X K K K K % X K XKk K KKk K KK KK KKK Kk K KKKkK¥KKKINKKNXKNKKIKRKXEKKXXXKXKKXXKXXKXKDINXDX
* INPUT
* PNODE - POINTER TO NODE
% K Kk ok K Kk Kk Kk K K K Kk Kk K kK K ¥k kK KKK KKNKKKNKNKXKRKXKKKKXKKKNXKKXKE K KKKXKKXKXXDIXK
GET STATUS QUEUE
DO FOR EACH SUBORDINATE STATUS STRUCTURE

INITIALIZE RED FORCE ARRAY

SUM PERCIEVED RED FORCES

DO FOR EACH FOE

TEST FOR FOE FORCES

SET FORCE RATIO TO ZERO

CALCULATE CURRENT FORCES

CALCULATE FORCE RATIO

SET FORCE RATIO CALCULATION TIME

GET NEXT STATUS STRUCTURE
FINISHED FORCE RATIO CALCULATIONS

180

AP

B B D 4
o &l

v
v .

L (C

s N d

AR

W, T,
P

SUBROUTINE FQUEUE(PNODE) N
XK Ak Kk MR KK KKK KK KKK KRN KKK K kR KR KKK KKK KK KR KKK KKK KKK K kKKK XX
* FQUEUE ORDERS THE SUBORDINATE'S RED/BLUE FORCE RATIO
* QUEUE BY DESCENDING ORDER. THE QUEUE ROOT IS AT NODE+21
KKK K K KK K KKK R R K KKK KKEKKRKKK K KKK KKk KKKXKKIKIKHNXIR KINKDIIXXIEINKDHNKINRKINKHNKDNXHKX¥XDKXDHEXSX
* INPUT
* PNODE - POINTER TO NODE
KK Kk kKK K KK KKK KKK EKKKKKKNKKKKK KKK KXXEKEXRKKKKEKXKKKKXXKKKXXXKXKXKXXKZKDIKDIX XK
GET STATUS QUEUE
SET ALL FRQ POINTERS TO 5
FIND MAX FORCE RATIO

GET NEXT PSTAT
CHECK IF MAX VALUE FOUND

SET ENTRY AT END OF QUEUE
END OF ORDERING FORCE RATIO QUEUE

181

hoh il

CElD it il il P i i o il SRRl B S S W

SASAYL] | I

o LS

-—
[

WP | St

v %
I I

L]
’
a2

LY
v S 5 .
" ".'

A, o
PRSI |

TR

v
o e
Ch

' v e
e AR R

ST

Py

IR

SUBROUTINE ATOOUT (PNODE, POMP,POUT)

L EE SRS R R RN R EREASRR NSRS R RS LR R R R R R RERERRY 2R R R REEREEEE

* ATOOUT CREATES OUTPUT MESSAGES THAT PASS ALONG AIR
* SUPPORT REQUESTS, MESSAGE TYPES 2800, 3000, 3400

¥ % %k %k %k %k k %k %k %k Kk Xk %k Kk ok %k Kk %k k K %k k %k Kk k ok Kk k k Kk k KK K KK KK KKKXKKKXKNKXXKNKXXXXXKX

* CALLS - GIMME, SNAP, FIND, ERROUT, RULES

¥ %k ok Kk Xk %k k k % %k Xk ok %k Kk %k %k % 2k %k % %k %k %k %k ok K k %k Kk Kk k K Kk Kk K K Kk KX ¥k kkkKkKkkXKXxkkkKXzxX

* INPUT

* PNODE - POINTER TO NODE

* POMP - POINTER TO OUTPUT TYPE
* POUT - POINTER TO MESSAGE TYPE

Kk K KKK Kok X KKK KKK KKEKKKKKKKKK KKK RKKKKEKK KKK KK KKKRKKXK XK KK X

GET FIRST ATO FOR THIS NODE
IF PROCESS MATCHES ATO, CREATE MESSAGE
ADD SORTIES TO STATUS

182

hokwg

AD-A168 973 C3 EVAL NODEL DEVELOPMENT AND TEST VOLUME 2 PROGRAMMERS 3/3
NUﬂL (U) lNST!TUTELFOECDEFENSERR!'MLVgESvsLEXﬂNDRIﬂ
UNCLASSIFIED IDR/HO 85 30596 MDA9@3-84-C-0034 F/6 9/2

g‘«**--u‘v' L RO R R T, 204 L

N

- -

| M Py)

8

o

rFEEEER R

A il L P ol

rr
r
re

PRI LR S IR R EE Y

12
EER
E5E mp
i
N o

-y

|
=
g
(]

==
1.8

boa
AN
il

e
I s

N
o

.

.. .

e

N MICROCOPY RESOLUTION TEST CHART . 5

NATIONAL BUREAU OF STANDARDS - 1963 ~ A .\'.- .'. ¥
Wy S
‘.“'.'~¢
)

. idgae

J rs'P}"_y.

" N
eti———

)

‘

\]

0l

A}

:

) N
e
’ g_:‘-g}
9 ol
W A\
3L T 1

!
N '\"-'ff:
(] NN
4 r"t -F.'f«
AR
‘ ;\“_\;
LYEN

¥ AT

5

BRI

o HECRINTA

lasahaintdiay PVl ot Sl o0 tol 08 Bt Su8 Bt -p B g8 N Yl WY NN KRRy ™) - N U NXE Y™ 1 Py 8 X - Y 0 B & Bt 2Bt et Bl Bt 02 Bt T R
| h

| e o
.»"7_
'l
' ﬁ SUBROUTINE ATORTN (PNODE, POMP,POUT) 3 W
i I R E R E R R SRR R R R R R RS R R E R L R R R R R R R R R EE R R E R R R R R R R R R R R R E R RS - il:
. * ATORTN PASSES ALONG AIR SUPPORT APPROVALS TO THE = o4
p * REQUESTOR USING MESSAGE TYPE 7000 =
FREFXXEXXEXEETESEREEEEEXEE XXX XX KRR XX XX E XXX KKK KK XKX XXX XX K XK Kk X KX ‘f'
* CALLS - GIMME, SNAP, FIND, ERROUT, RULES e
"~ I B R R ER SRR R R R R E R R R R R R R R R R R R R R R R REERE R R R R R R RESE R "_
&‘ * INPUT &
* PNODE - POINTER TO NODE B
» . POMP - POINTER TO OUTPUT TYPE -
ce. . POUT - POINTER TO MESSAGE TYPE
~ FAXEXEXE XXX R EXR R AR K E KX XA KX XX XA XK XX A XL LA XXX L XA XX E XXX X K XK KX X X .
. CHECK FOR ATO BLOCK e
& CHECK ATO FOR THIS PROCESS o
n GET AIR SUPPORT RETURN DESTINATION FROM ATO LIST o
FIND RETURN DESTINATION
< CREATE OUTPUT MESSAGE
- ENTER DATA
SET ALTERNATE DESTINATIONS
SET FIRST ALTERNATE TO FIRST NODE ALTERNATE ¢
N TRY SECOND ALTERNATE <
SET FIRST ALTERNATE TO SECOND NODE ALTERNATE =
SET SECOND ALTERNATE TO NODES FIRST ALTERNATE
= TRY SECOND MESSAGE ALTERNATE -
SET FIRST ALTERNATE TO FIRST NODE ALTERNATE ne
TRY SECOND NODE ALTERNATE 4
SET FIRST ALTERNATE TO SECOND NODE ALTERNATE =
B TRY SECOND NODE ALTERNATE
SET SECOND ALTERNATE TO SECOND NODE ALTERNATE "
r: END OF ALTERNATE LOGIC =
v CHECK FOR MESSAGE TRACKING FLAG o
& SET TRACKING FLAG =
CHECK FOR MESSAGE SEND TIME 7
o PUT MESSAGE ON FUTRUE QUEUE BY TIME
- PUT MESSAGE ON SEND QUEUE BY PRIORITY N
GET SEND QUEUE ;;:
- FIND LINK TYPE re
7 GET NEXT ATO nd
RESET MESSAGE TRACKING FLAG OFF L
-
=
z &
- -
- :‘
o
e -".
E
.::
M 183

PSS N e A Wi) e v g ot da it aip¥ b qxy 2 fa 4% - 1o RS- V. Y 3 #, nd [Ny . Cop b g A A g

3
7 } 714
N B.3. Post-Processor . -3
The post-processor consists of two programs. Both programs .‘LJ
!g produce graphics from data files created by C3EVAL. Program i
+ GraphSum uses files c3SUM.DAT and LOSST.DAT for input to create .
E; summary graphs. Program GraphT uses files TIMET.DAT and .ﬁ
LOSST.DAT for input to create time t graphs. File c3suM contains 32
E! all summary data pertaining to the number of messages and ;;
sorties. File TIMET contains running totals for each time period o
3y for all data pertaining to the number of messages and sorties. AN
‘i File LOSST contains running totals for each time period for all N
e data pertaining to the number of combat system losses. S
- B.3.a. Program GraphSum éi
- . GraphSum creates bar\ graphs using the summary data output by gl
- C3EVAL. The actual graphing will be done by a call to ;
i VAXDECGRAPH. Any detailed information on DECGRAPH can be 5&
. obtained from the appropriate VAXDECGRAPH manuals. There are 5 52
ii types of graphs: communications path limits, input message =
limits, output message limits, combat support and losses. The w
§; graphs represent the total messages/sorties/losses for a given &.
o time period for each uni‘ displayed. The first four graphs can EﬁQ
[] display from 1 to 5 units at a time. The fifth graph can only
* display 1 unit at a time. gj
- The first part of file C3SUM is the preamble documentation. :ﬂ
e The first line of the preamble documentation is used as the itx
-y subtitle for the graph. The last line of the preamble contains .
~ 'END' in card columns 1-4. Note that the preamble must contain Qﬁ
- at least 2 lines. After the 'END'card follows 3 header documen- %Q
E; tation lines. The rest of the file is data. There is a maximum §S
of 19 units each represented by one data line of the form
_. (1X,3A4,218,1215). The values read are: EE»
A
i &
184 \
e >
5
P A.

S L AR SR R T S AP - P R S I . R CSC T, IR R R R TR I S N et e e
NATAT ST IP I “'.0.-".,-‘ et AN ey Y SRR R . e A, < 7 T

PRSI W UTUTURN CWUNR T AT e . TR WO WA T TR IRl AA N § TV : -y S 21

AN m

£

>
re

a5 |

Co.

Unit identifier (consisting of 12 characters)
Unit number

Unit type

Communications limit in
Communications limit out
Communications limit held
Communications limit deleted
Input limit in

Input limit held

Input limit deleted

Output limit out

Output limit held

Output limit deleted

The last unit read in must be the unit number 1.

B.3.a(l). Subroutine GetSys

This subroutine is only called when the user requests to
graph losses. The user is allowed to choose from 1 to 6 combat
systems to graph from a list of 11 combat systems. The 11 combat
systems are: apc, afv, tank, atank 1lt, atank, hv, mortar,
artillery, helicopter, aaa, sam and cas. The user then chooses
which unit to graph. The losses for the specified blue unit and
the red units facing the blue unit are graphed. The units that
the user can choose from are all units who have non-zero losses.

B.3.a(2). Subroutine GetVector

This subroutine determines which units will be graphed.
There is a limit of 5 units per graph. The units to be graphed
are determined at run time by the user. When the user selects
the units, their locations within the data structure are stored
in a unit vector for later recall. The units available for
selection are determined by the input file.

185

A A LA
Spaeeee

T

x
A

Ay
et

]

L ot ol M
‘(- ,"‘l

:(‘r

PO ol of
L] 'l’:' % o

an

v .

. -
RN .
P
.

" S
[AL
»
o',

.'i. "v
P

aa e '.'

AN
b‘)"'

PSR s
AN Yavan

’

ALY s ¥, i N Wl L % < 5

. P
5 i
. -
& B.3.a(3). Subroutine Graphl "-;J
<& WA
!! Subroutine Graphl creates the data file for a bar graph of X2
: the communications path limits. The data file consists of 2 iﬁ
o sections: the instruction portion and the data portion. The {A
E} instruction portion contains the title, subtitle, horizontal ;g
label and vertical label for. the graph. The data portion has a 52
gz line for each unit in the unit vector. Each line contains the '@
) unit name and the number of messages in, out, held and deleted by ﬁ;
@{ the communications links. "
o 4
et B.3.a(4). Subroutine Graph2 ,;f
| Subroutine Graph2 creates the data file for a bar graph of ;f
CQ the input message limits. The data file consists of 2 sections. i;
- The instruction portion contains the title, subtitle, horizontal)
- label and vertical label for the graph. The data portion has a h:
g line for each unit in the unit vector. Each line contains the 3
. unit name and number of messages in, held and deleted at the 3:
.' input side of the node. '
;: B.3.a(5). Subroutine Graph3 ;\
Subroutine Graph3 creates the data file for a bar graph of ol
!g the output message limits. The data file consists of 2 sections. o
A The instruction portion contains the title, subtitle, horizontal ;Z
Eﬂ label and vertical label for the graph. The data portion has a &;
) line for each unit in the unit vector. Each line contains the i
'? unit name and the number of messages out, held and deleted at the
o output side of the node.
2 B.3.a(6). Subroutine Graph4
- Subroutine Graph4 creates the data file for a bar graph of
w the combat support. The data file consists of 2 sections. The
A instruction portion contains the title, subtitle, horizontal
] 186
~
B
Ly

H .
o
ki <
. label and vertical label for the graph. The data portion as a - Iy
line for each unit in the unit vetor. Each line portion has a = :;-::j
p line for each unit in the unit vector. Each line contains the %

, unit name and the number of close air support and helicopter ;
E{' sorties the unit received. .
)
P B.3.a(7). Subroutine Graph5 Lt
) Subroutine GraphS creates the data file for a bar graph of 4"
[j:'_ the losses. The data file consists of 2 sections. The =

A instruction portion contains the title, subtitle, horizontal :
o label and vertical label for the graph. The title contains the j:j.;
name of the unit being graphed. The data portion has a line for :‘,';
each combat system to be graphed. Each line contains the name of Z:
[the combat system and the blue and red losses at the specified Eas
~ unit. ::':::
i~ 20
. B.3.a(8). Subroutine Options :

i_ Subroutine Options allows the user to select at run time

which type of graph is to be used. The six options available to -.':',-t
: the user are: :
(1) Quit \{
. (2) Communications Path Limits s
g (3) Input Limits ...
“ (4) Output Limits o2
% (5) Combat Support ;;:
- (6) Losses
K RS
” o
v X
¢)
\.' » g
187 :
S .

pOM]

=

B.3.a(9). Data Structures

NAME TYPE DESCRIPTION

COMSYS A

Yy

L |

-~
(]

y LOSS A
b
o
NUMELEM I
.} NUMSYS I
NUMUNIT I
‘s, SCREEN I

n SUBTI A
e SUMDATA A
rS
&
S.
:7-2:

........
..........
..........
~~~~~~~~~~

1lst dimension
2nd dimension
1-3
4
1st dimension
2nd dimension

1-11
12-22
23

Number of uni

Number of combat systems to graph
Number of units read in from data file
Value representing the action to take

1 - Quit
2_

3-

4 - Output
5-

6 - Losses

40 character
data set

lst dimension - multiple time wvalues
2nd dimension - multiple units

3rd dimension

1- 4

5- 7

8-10
188

ts

Communications path limits
Input limits

limits

Combat support

field for identifying the

- Communication paths limits
- Input limits

- Qutput limits

multiple combat systems

name of the combat system
combat system's number
multiple time values
multiple units

blue combat systems losses
red combat systems losses
force ratio

to graph

Number of messages in, out,
held, and deleted

Number of messages in, held,
and deleted

Number of messages out,
held, and deleted

.........




NAME TYPE DESCRIPTION
11-12 - Combat support
Numbgr of CAS and Helicopter
sorties
UNITID A lst dimension - multiple units
2nd dimension
1- 3 - unit name
4 - unit number
5 - unit type
6 - combat system losses flag

0 --> unit suffered losses
1 --> unit had no losses
VECTOR A The unit numbers of the units to graph

B.3.a(10). Program Notes

One possible enhancement would be to add the capability for the
user to specify the range for the vertical axis. This way the
graphs would have the same scales and could be placed side to side
for comparison. The problem is that there seems to be no way to
tell DecGraph to freeze the scale from the user's code. Another
enhancement would be to specify colors for each part of the graph
instead of leaving it to random selection.

189

U T T O S NP AP i L
.................

NN e e e T
A RPN P AT T P PP PP R AL T T T ST T St P T



e P o * 1~ T I oy f . Y4 s .‘~. A & (¥ P Py
.W_ch\.wv.‘ Rl I AR Lo A RIS | XA, AR ...L O
) -e T - -

- - -
Tl

e

-

S

b
190
rerae

R

Internal Code Documentation

B.3.a(ll1).

§
3

e &3 B 22 Goe OB Al




P Y
Ny

PROGRAM GRAPHSUM
PURPOSE: CREATE BAR GRAPHS USING SUMMARY DATA OUTPUTTED BY

C3EVAL. THERE ARE 5 TYPES OF GRAPHS: COMMUNICATIONS PATH
LIMIT, INPUT LIMIT, OUTPUT LIMIT, COMBAT SUPPORT AND LOSSES.

LIMITATIONS:
MAXIMUM OF 19 UNITS BY DIMENSION.

EXTERNAL REFERENCES:
DECGRAPH
READ SUBTITLE

SKIP OVER THE PREAMBLE DOCUMENTATION

SKIP OVER THE HEADER DOCUMENTATION

READ IN THE SUMMARY DATA

READ LOSSES DATA FILE

INITIALIZE GRAPH DATA FILE

SELECT GRAPH

CHECK TO SEE IF USER IS READY TO QUIT

DETERMINE UNIT VECTOR AND EACH ELEMENTS LOCATION IN STORAGE

BRANCH TO OUTPUT APPROPRIATE GRAPH DATA

CREATE DATA FILE FOR GRAPH 1 COMMUNICATIONS PATH LIMIT

CREATE DATA FILE FOR GRAPH 2 INPUT LIMIT

CREATE DATA FILE FOR GRAPH 3 OUTPUT LIMIT

CREATE DATA FILE FOR GRAPH 4 COMBAT SUPPORT

CREATE DATA FILE FOR GRAPH 5

|
&
wm
(2]
td
n

.
a.l
5

o
‘r‘“: '1'

»
"y

)




[ S S i S P Rl e Nt Sl Tl A & A Gl Al S Sk sl sl e R AR el Sud Al PR b B ' Sy At BAnER | R g A - 4 TY TPV T VR IR WE

& &
=
:;. -l
L_: CLOSE DATA FILE AND CREATE GRAPH 1 84
4
ﬂ WAIT UNTIL USER READY TO CONTINUE .‘
' 2
N SUBROUTINE GETSYS(VECTOR,COMSYS,NUMSYS,UNITID, NUMUNIT) N
J R
d PURPOSE: 5}
USED WHEN GRAPHING LOSSES. DETERMINES WHICH COMBAT SYSTEM
LOSSES TO GRAPH. EACH GRAPH IS LIMITED TO THE LOSSES AT A =
F PARTICULAR NODE. o
24l
- T
2 DETERMINE NUMBER OF COMBAT SYSTEMS TO GRAPH :;
= DETERMINE WHICH COMBAT SYSTEMS TO GRAPH o
" DETERMINE WHICH UNIT TO GRAPH. ONLY UNITS WHO HAVE NON-ZERO e
2 LOSSES ARE SELECTABLE FOR GRAPHING. e
o STORE THE TITLFS OF THE COMBAT SYSTEMS THAT WERE CHOSEN TO )
BE GRAPHED. R
~
li SUBROUTINE GETVECTOR(VECTOR, NUMELEM, UNITID, NUMUNIT) ve
PURPOSE: DETERMINE WHICH UNITS WILL BE GRAPHED. FIND THE
4 POSITION OF EACE UNIT WITHIN THE DATA STRUCTURE AND STORE of
<3 THE LOCATIONS IN A VECTOR. SUBROUTINE GETVECTOR RETURNS 3
- THE LOCATION VECTOR AND THE NUMBER OF ELEMENTS IN THE e
n VECTOR. v,
1% SUBROUTINE GRAPH1(SUBTI, UNITID, VECTOR, SUMDATA, NUMELEM) 5
o5 PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF COMMUNICATIONS o
S PATH LIMITS. GRAPH HAS BARS FOR THE NUMBER OF MESSAGES IN, %
OUT, HELD, AND DELETED FOR EACH UNIT IN THE VECTOR.
- .
CREATES INSTRUCTION PORTION OF DATA FILE. ‘
: Ay
= CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS A
OF THE UNIT NAME IN QUOTES AND THE NUMBER OF MESSAGES IN, OUT, a
o HELD AND DELETED.
‘- -
1” SUBROUTINE GRAPH2(SUBTI, UNITID, VECTOR, SUMDATA, NUMELEM) R
'
N $
e PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF INPUT MESSAGE 9%
LIMITS. GRAPH HAS BARS FOR THE NUMBER OF MESSAGES IN,
\ HELD, AND DELETED FOR EACH UNIT IN THE VECTOR. L
o
CREATES INSTRUCTION PORTION OF DATA FILE. :
]
- CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
N AN,




G

b

)

m

ShA

OC

L OGN A P O It it ). I A Rl 3 ~ AP AL LR UN W . Wl A d i

OF THE UNIT NAME IN QUOTES AND THE NUMBER OF MESSAGES IN, HELD
AND DELETED.

SUBROUTINE GRAPH3(SUBTI, UNITID, VECTOR, SUMDATA, NUMELEM)
PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF OUTPUT MESSAGE

LIMITS. GRAPH HAS BARS FOR THE NUMBER OF MESSAGES OUT,
HELD, AND DELETED FOR EACH UNIT IN THE VECTOR.

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
OF THE UNIT NAME IN QUOTES AND THE NUMBER OF MESSAGES OUT,
HELD AND DELETED.

SUBROUTINE GRAPH4(SUBTI, UNITID, VECTOR, SUMDATA, NUMELEM)
PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF COMBAT SUPPORT.

GRAPH HAS BARS FOR THE NUMBER OF CLOSE AIR SUPPORT AND
HELICOPTER SORTIES FOR EACH UNIT IN THE VECTOR.

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
OF THE UNIT NAME IN QUOTES AND THE NUMBER OF CLOSE AIR SUPPORT
AND HELICOPTER SORTIES.

SUBROUTINE GRAPHS(SUBTI,UNITID,VECTOR,LOSS,COMSYS,NUMSYS)
PURPOSE: CREATE DATA FILE FOR BAR GRAPH OF LOSSES. GRAPH HAS

BARS FOk THE NUMBER OF BLUE AND RED LOSSES FOR EACH COMBAT
SYSTEM FOR THE SPECIFIED UNIT.

CREATES INSTRUCTION PORTION OF DATA FILE

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
OF THE NAME OF THE COMBAT SYSTEM AND THE BLUE AND RED LOSSES
AT THE SPECIFIED UNIT.

SUBROUTINE OPTIONS(SCREEN)

PURPOSE: ALLOWS THE USER TO SELECT WHICH TYPE OF GRAPH IS
TO BE CREATED.

.

f.'r‘_ '

.
I"a 'l,'l' r‘ .

¥

r
[ ]

”

LY et
R
IR LI




LB 2

B.3.b. Program GraphT

GraphT creates line graphs using the summary data output by
C3EVAL. The actual graphing will be done by a call to
VAXDECGRAPH. Any detailed information on DECGRAPH can be ob-
tained from the appropriate VAXDECGRAPH manuals. There are 5
types of graphs: communications path limits, input message
limits, output message limits, combat suport and losses. The
graphs represent the number of messages/sorties/losses for a
given unit for each time increment over a set time period.

The input file TIMET consists of a multiple number of data
sets. Each data set represents the running totals for a given
time period. Therefore, in order to obtain the number of
messages/sorties for each time increment the previous total is
subtracted from the current total. The first part of the file is
the preamble documentation. The first line of the preamble
documentation is used as the subtitle for the graph. The last
line of the preamble contains 'END' in card columns 1 - 4. Note,
The data sets follow the 'END' card.

Each data set starts with a line of the form (23X,I6) where
the value is the time corresponding to the data. The second and
third lines are header documentation lines. The rest of the data
set is data. There is a maximum of 19 units each represented by
one data line of the form (IX,3A4,218,121I5). The values read
are:

Unit identifier (consisting of 12 characters)
Unit number

Unit type

Communications limit in

Communications limit out

Communications limit deleted

Input limit in

Input limit held

194

e st

PR
PR AR N

'
.
‘

:] .

.
. .,

4
'



R
LGP S

-
Y

-
(3
]

“n

- v,
A

"

s

-

x »,
» -l"" .

S AP YUY 3'a*adad'ad'ntatrintaladasal Py vryy (EAPRA MY Rt > gt p ) 4.0 9. b

Input limit deleted -

Output limit out

Output limit held

Output limit deleted
The last line read in for each data set must be the unit number
1.

B.3.b(l). Subroutine GetSys

This subroutine is only called when the user requests to
graph losses. The user is allowed to choose from 1 to 6 combat
systems to graph from a list of 11 combat systems. The 11 combat
systems are: apc, afv, tank, atank, 1lt, atank, hv, mortar,
artillery, helicopter, aaa, sam and cas. Then the user selects
either the red or blue side to be graphed and which particular
unit to graph. The units that the user can choose from are all
units who have non-zero losses.

B.3.b(2). Subroutine GetUnit

This subroutine determines which unit will be graphed. The
unit to be graphed is determined at run time by the user. When
the user selects the unit its location within the data structure
is stored for later recall. The units available for selection
are determined by the input file.

B.3.b(3). Subroutine Graphl

Subroutine Graphl creates the data file for a line graph of
the communications path limits at a specific node over a given
time interval. The data file consists of 2 sections: the
instruction portion and the data portion. The instruction
portion contains the title, subtitle, horizontal label and
vertical label for the graph. The data portion has a line for

each time increment. Each line contains the time and the number

S e e

“» Y W L 3
L ] A
A b

ay |
Rl

RN

A 870, 1y % 'y By RF &
iIDDNN, 2N

4

' _'-r r'.v"- ..- _'-'.‘- ;

et amaman
RN

b4




.‘
K
, A
& b
¢ of messages in, out, held and deleted by the communications links " ey
B for that one time increment. 193
n B.3.b(4). Subroutine Graph2 4
. "
:‘.\". Subroutine Graph2 creates the data file for a line graph of D
LS
- the input message limits at a specific node over a given time

o interval. The data file consists of 2 sections. The instruction Lﬁ
portion contains the title, subtitle, horizontal label and I;;

,C_I'- vertical label for the graph. The data portion has a line for E
' each time increment. Each line contains the tine and the number
: of messages in, held and deleted at the input side of the node _
for that one time increment. P
g

- R
- B.3.b(5). Subroutine Graph3 £
Subroutine Graph3 creates the data file for a line graph of ;

the output message limits at a specific node over a given time ’

s interval. The data file consists of 2 sections. The instruction
. portion contains the title, subtitle, horizontal label and ver- N
. tical label for the graph. The data portion has a line for each :;
__{: time increment. Each line contains the time and the number of b
messages out, held and deleted at the output side of the node for :'
n that one time increment. -
S

B.3.b(6). Subroutine Graph4 w-
Subroutine Graph4 creates the data file for a line graph of -

» the combat support at a specific node over a given time interval. N
l., l\.
The data file consists of 2 sections. The instruction portion N
contains the title, subtitle, horizontal label and vertical label "
x for the graph. The data portion has a line for each time 4

' increment. Each line contains the tine and the number of close

air support and helocopter sorties the node received for that one ::E
time increment. :j

.. .
B J
‘s

L’

:.' LS
'-I 196 Nl
e .',
™~

~




)
'T‘
R 'R
K B.3.b(7). Subroutine GraphS o " Iy
’l
4 Mo
n Subroutine Graph5 creates the data file for a line graph of ‘1 o
the losses at a specific node for either the red or blue side Y
N over a given time interval. The data file consists of 2 '
E:f sections. The instruction portion contains the title, subtitle, if
horizontal label and vertical label for the graph. The title <
g contains the name of the unit to be graphed and which side is to .,
be graphed. The data portion has a line for each time incre- "
7{ ments. Each line contains the time and the number of losses for ";
> - . ‘s ng
each combat system for the specified side at the specified node.
= . . ¢
B.3.b(8) Subroutine Options ::;
e Subroutine Options allows the user to select at run time {:'
" which type of graph is to be used. The six options available to
the user are: té
2 (1) Quit » 3
.. (2) Communications Path Limits N
] (3) - Input Limits )
(4) Output Limits 4
i Y
Rt (5) Combat Support Y
' (6) Losses )
”
L ’,n.
7 .
: v
-, -
4 1
e
= . 197 "
. <.,




[

B.3.b(9). Data Structures
NAME TYPE DESCRIPTION
COMSYS A lst dimension - multiple combat systems
2nd dimension
1-3 - name of the combat system
4 - combat system's number
LOSS A lst dimension - multiple time values
2nd dimension - multiple units
3rd dimension
1-11 - blue combat systems losses
12-22 - red combat systems losses
23 - force ratio
NUMSYS Number of combat systems to graph
NUMUNIT Number of units read in from data file
SCREEN Value representing the action to take
1 - Quit
2 - Communications path limits
3 - Input limits
4 - Output limits
5 - Combat support
6 - Losses
SIDE I Value representing which side to graph
1 - Blue
2 - Red
SUBTI A 40 character field for identifying the data set
SUMDATA A lst dimension - multiple time values

2nd dimension
3rd dimension
1- 4

198

multiple units

Communications paths limits
Number of messages in, out,
held, and deleted

Input limits
Number of messages in, held,
and deleted

— ;».

d |

)

- v v v .
Aty t @ .
AU

SN

)

ihe.

Y,
-

-'i.

"

."\,:: he

AN

s v !

‘ - r"-"t/:'.:l./-

AR E RN




k
g
> 4 M
N NAME TYPE DESCRIPTION " N
8-10 - Output limits 1 ';:'
- Number of messages out, held, -
- and deleted
» 11-12 - Combat support .u(
‘ Number of CAS and Helicopter 4
o~ sorties 5
] TIME I Number of time increments read in ‘_
N TIMET A The value of each time increment read in t‘
- UNIT I The unit number of the unit to graph -
1..~L UNITID A 1st dimension - multiple units -

2nd dimension
‘ 1- 3 - unit name ‘..-
' 4 - unit number ::-E
AN 5 - unit type :"
& 6 - combat system losses flag -
> 0 --> unit suffered losses
R : 1 --> unit had no losses
i : B.3.b(10). Program Notes b
b . One possible enhancement would be to add the capability for the
: e user to specify the range for the vertical axis. This way the graphs 3,
; would have the same scales and could be placed side to side for bt
. comparison. The problem is that there seems to be no way to tell ‘e
b DecGraph to freeze the scale from the user's code. Another en- :
{ f:fz hancement would be to specify colors for each part of the graph Z:
instead of leaving it to random selection. %
"
; 7 p:
l _
L N
=
.': ™

’ B 199

B

!';- .
%




[
-y

B.3.b(11). Post. Processor Internal Documentation I

)

v
[ n S
-

-,

XA

»

1'5

.
v

ol 4,0,

X4

-

o A b A

"' ‘l""

.

oL

Py
e ¢
§ & ¢ 2

&

Y




ws
2

i} ﬁ PROGRAM GRAPHT .;::‘l
s
PURPOSE: CREATE LINE GRAPHS USING TIME T DATA OUTPUTTED BY
s C3EVAL. THERE ARE 4 TYPES OF GRAPHS: COMMUNICATIONS PATH \
' LIMIT, INPUT LIMIT, OUTPUT LIMIT, AND COMBAT SUPPORT. g
E LIMITATIONS: e
\ MAXIMUM OF 19 UNITS BY DIMENSION.

THE LAST LINE OF EACH TIME T DATA SET MUST BE THE UNIT J
WHOSE IDENTIFIER IS 1.

EXTERNAL REFERENCES: &
; DECGRAPH ;
INITIALIZE WORKING AREA i

READ TIME T DATA FILE :;
TIME T DATA FILE CONSISTS OF MULTIPLE TIME T DATA SETS J?
~

[ 4

SKIP OVER THE PREAMBLE DOCUMENTATION 0

~rves
. .

.
(LN

READ IN THE TIME CORRESPONDING TO THIS TIME T DATA SET

READ IN TIME T DATA SET

.« .
st
.y

. . .
“ e
.\.| (% P I

-
' d
n
’

2
.
D)

v
L)

VALUES READ IN ARE RUNNING TOTALS AT TIME T. WE WANT X
TO HAVE THE VALUES FOR EACH INDIVIDUAL TIME T INCREMENT.

! THEREFORE, SUBTRACT THE PREVIOUS TIME T TOTAL.

s
- THE LAST RECORD IN A TIME T DATA SET IS THE UNIT WHOSE o
N IDENTIFIER IS EQUAL TO ONE. N
-
READ LOSSES DATA FILE

f}
j:f.' FIND LOCATION OF UNIT NAME WITHIN ARRAY JNITID '.‘:
- .
P INITIALIZE GRAPH DATA FILE ‘.
N~ oy
N I
.- SELECT GRAPH o
E Vo
. CHECK IF USER IS READY TO QUIT .:__- _
: b

DETERMINE UNIT TO BE GRAPHED AND ITS LOCATION IN THE j;

i DATA STRUCTURE :
)




&; BRANCH TO OUTPUT APPROPRIATE GRAPH DATA

i; CREATE DATA FILE FOR GRAPH 1 - COMMUNICATIONS PATH LIMIT
E’ CREATE DATA FILE FOR GRAPH 2 - INPUT LIMIT

'’

CREATE DATA FILE FOR GRAPH 3 OUTPUT LIMIT

CREATE DATA FILE FOR GRAPH 4 COMBAT SUPPORT

CREATE DATA FILE FOR GRAPH 5 LOSSES

CLOSE DATA FILE AND CREATE GRAPH

WAIT UNTIL USER READY TO CONTINUE
1 SUBROUTINE GETSYS(UNIT,COMSYS,NUMSYS,UNITID,NUMUNIT, SIDE)
PURPOSE:
- USED WHEN GRAPHING LOSSES. DETERMINES WHICH COMBAT SYSTEM
B LOSSES TO GRAPH. EACH GRAPH IS LIMITED TO THE LOSSES AT A
PARTICULAR NODE ON EITHER THE RED OR BLUE SIDE.
DETERMINE NUMBER OF COMBAT SYSTEMS TO GRAPH
m
- DETERMINE WHICH COMBAT SYSTEMS TO GRAPH
DETERMINE WHETHER TO GRAPH BLUE OR RED SIDE
L L2
DETERMINE WHICH UNIT TO GRAPH. ONLY UNITS WHO HAVE
NON-ZERO LOSSES ARE SELECTABLE FOR GRAPHING.
< STORE THE TITLES OF THE COMBAT SYSTEMS THAT WERE CHOSEN
TO BE GRAPHED.
1 SUBROUTINE GETUNIT(UNIT, UNITID, NUMUNIT)
. PURPOSE:  DETERMINE WHICH UNIT WILL BE GRAPHED. FIND
E; THE POSITION OF THE UNIT WITHIN THE DATA STRUCTURE.

1 SUBROUTINE GRAPH1(SUBTI,UNITID,UNIT, SUMDATA, TIMET, TIME)
PURPOSE : CREATE DATA FILE FOR LINE GRAPH OF COMMUNICATIONS

PATH LIMITS. GRAPH HAS LINES FOR NUMBER OF MESSAGES IN,
OUT. H..LD AND DELETED WITH RESPECT TO TIME.

202

'''''' B A I G R
EARE A I PR U TP S G S S A PRI S SRR Dol . D SRS R A S



LA (o

[
‘ﬁ.ﬂ S

S22

»
.
D

vy
’ »

n. 1
LI T S A T K I I TN Ne e AN N SRS .
A CRBREEI 1 B PGS PR PRA K IR O, A{L{L L":s.u x.\_s._-. 1.~_{~.LA..LxA!. L' *\. POAVROATHE !.\:'C-\. \.‘\":‘ ; - ‘-\_A. .f\\ \*s.\ Y

CREATES INSTRUCTION PORTION OF DATA FILE. }v

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE
CONSISTS OF THE TIME AND THE NUMBER OF MESSAGES IN, OUT,
HELD AND DELETED.

SUBROUTINE GRAPH2(SUBTI,UNITID,UNIT,SUMDATA, TIMET, TIME)

PURPOSE: CREATE DATA FILE FOR LINE GRAPH OF INPUT MESSAGE
LIMITS. GRAPH HAS LINES FOR NUMBER OF MESSAGES IN,
HELD AND DELETED WITH RESPECT TO TIME.

CREATES INSTRUCTION PORTION OF DATA FILE. -

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE
CONSISTS OF THE TIME AND THE NUMBER OF MESSAGES IN. HELD
AND DELETED.

SUBROUTINE GRAPH3(SUBTI, UNITID, UNIT, SUMDATA, TIMET, TIME)

PURPOSE: CREATE DATA FILE FOR LINE GRAPH OF OUTPUT MESSAGE
LIMITS. GRAPH HAS LINES FOR NUMBER OF MESSAGES OUT,
HELD AND DELETED WITH RESPECT TO TIME.

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE
CONSISTS OF THE TIME AND THE NUMBER OF MESSAGES OUT,
HELD AND DELETED.

SUBROUTINE GRAPH4(SUBTI, UNITID, UNIT, SUMDATA, TIMET, TIME)

PURPOSE: CREATE DATA FILE FOR LINE GRAPH OF COMBAT SORTIES.
GRAPH HAS LINES FOR NUMBER OF CLOSE AIR SUPPORT AND
HELICOPTER SORTIES WITH RESPECT TO TIME.

CREATES INSTRUCTION PORTION OF DATA FILE.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE
CONSISTS OF THE TIME AND THE NUMBER OF CLOSE AIR SUPPORT
AND HELICOPTER SORTIES.

SUBROUTINE GRAPHS(SUBTI,UNITID,UNIT,LOSS,COMSYS, NUMSYS, SIDE,

PURPOSE:

CREATE DATA FILE FOR LINE GRAPH OF LOSSES. GRAPH HAS LINES
POR THE NUMBER OF RED OR BLUE LOSSES FOR THE SPECIFIED COMBAT
SYSTEMS AT THE SPECIFIED NODE.

CREATES INSTRUCTION PORTION OF DATA FILE
203

-------------



-

-
.

CREATES DATA PORTION OF DATA FILE. EACH DATA LINE CONSISTS
OF THE TIME AND THE NUMBER OF LOSSES FOR EACH COMBAT SYSTEM
FOR THE SPECIFIED SIDE AT THE SPECIFIED NODE.

SUBROUTINE OPTIONS(SCREEN)

PURPOSE: ALLOWS THE USER TO SELECT WHICH TYPE OF
GRAPH IS TO BE CREATED.




’
’ *

s
0

e
[P
{

N

. M

& SUBROUTINE STATIN e
- I E R R E R R E R RS RS R ERER RS R R R R RS R R R R R R R R R R R LR R R R R EREEE f‘k*_
* STATIN PERFORMS INITIATION ACTIONS FOR THE COMMANDERS 1 h

g * PERCEPTION OF SUBORDINATE STRENGTHS AND COMBAT STATUS | B

*ttt******t**tt*t**#*#******l‘t******#*t*******#i**f****t

DO FOR ALL NODES R0

Ej DO FOR ALL STAT (SUBORDINATES) BLOCKS =
. SET BLUE STRENGTHS =5

ps

2

RSt

2y
Iy Ry
B 3
- ix
- b
.

: =

X
o
RIS
.




SUBROUTINE STATOU :
AR AR R R R R AR R R AN KRR MR R R AR KA R AR R KRR R AN E AR AR KA R AR KR A KK KR XX .
* STATOU PRINTS OUT THE COMMANDERS
* PERCEPTION OF SUBORDINATE STRENGTHS AND COMBAT STATUS
R AR A AR AR R A A A E A AR AR KR KR R A KR AR KRR R AR KKK AR R KRR KR KR KX X
DO FOR ALL NODES
DO FOR ALL STAT (SUBORDINATES) BLOCKS
GET BLUE STRENGTHS
GET POSTURES

=

i -TE
- -
)

5%

2

v a
P ’ J‘.
L

b

i/
i
A AL

e
‘l"‘\ AN

- 206

TR T T e N e e AT A A e
RGO, Gl A R G A A A AN A A A AN A O E A




LA

N

L.-\—'-."<

s,

™

ot

WX‘F‘WVY‘.‘F’S"""‘!‘W,‘"} AR AVE RWEN A N v it Eat 8ot D A at

SUBROUTINE STATUP (PNODE, POMP)

XXX E XX XXX R LA EEXXR KR XX EXE KX EFAER XX XL XXX AR X XXX R X E XXX XX R KX &
* SUBROUTINE STATUP UPDATES COMMANDERS PERSEPTIONS OF

*  SUBORDINATES COMBAT STATUS VIA MESSAGES 3126 AND 3130

XA KR XK KX K KK kK koK kKK KRR KK KKK KKK KKKKEK KKk Kk KKKKEkKKEKEKKKXX KKK

* INPUT
* PNODE - POINTER TO NODE
* POMP - POINTER TO OUTPUT TYPE

KEXXERE XXX XK KKK XX KX KK KX KX KKK KKK KEKXRE R KX KKKk kKKK XKXXEXKX

TEST FOR SUBORDINATE STATUS STRUCTURE
GET FIRST SPOT REPORT
IF REPORT MATCHES PROCESS, LOG DATA
FIND SUBORDINATE'S STATUS STRUCTURE
ERROR, NO SUBORDINATE CTATUS STRUCTURE

DETERMINE SIDE
UPDATE BLUE LOSSES AND STRENGTHS
UPDATE BLUE POSTURE
UPDATA BLUE DATA TIME TO LATEST TIME

UPDATE RED LOSSES
UPDATE RED POSTURE
UPDATA RED DATA TIME TO LATEST TIME

GET NEXT SPOT REPORT
ALL SPOT REPORTS PROCESSED FOR THIS RULE

207

3
- -

v
5—.“' y

-

'f.vfi"
RCADER 3

B
A

A “'v."

2|

o

>,




Dt ot ot oS i oM abg’ e

Y m

SUBROUTINE INTLUP (PNODE, POMP, POUT) -

I E B R R ERERFEERSRL R RER R SRS R R R R R EE R R RERRE R R RS R R R R R EREESE

* SUBROUTINE INTLUP UPDATES COMMANDERS PERSEPTIONS OF

S * SUBORDINATES COMBAT FOES VIA MESSAGE 3136
- .********************************************************
* INPUT
F- * PNODE - POINTER TO NODE
. * POMP - POINTER TO OUTPUT TYPE
* POUT - POINTER TO OUTPUT MESSAGE TYPE
¥k K K K K K X 3k ok ok ok k K KK Kk ok ok k ok kK ok kK okokk ok kkKKEKKKOKSKSKKKKXXKKKkKRKKXXKXXXKXX
g GET FIRST SPOT REPORT

IF REPORT MATCHES PROCESS, LOG DATA
.. TEST FOR SUBORDINATE STATUS STRUCTURE
b FIND SUBORDINATE'S STATUS STRUCTURE
ERROR, NO SUBORDINATE STATUS STRUCTURE

~—v
g /'J s o

e
T

- UPDATE EXISTING FOE ESTIMATE IF NEW DATA IS LATEST o

CHECK DATA CURRENCY s

DELETE CURRENT ESTIMATES -

. ENTER NEW ESTIMATES )

% DELETE THESE DATA STRUCTURES 3
GET NEXT SPOT REPORT

ALL SPOT REPORTS PROCESSED FOR THIS RULE




oo A s & htn A M oA [l L - te Ua% o'y - W T NS G R IR IR TSR A N [} A ) [3

(&
E '
| )
’ - r:"
£ it
'IF susmouriNe casos(sHOTB) | § &3
* *_ﬁ**t***"tttt*t‘t#*l—*!It-**t**t**#*****8#*********#*-&*#‘*‘ ;j );
‘ * CASLOS SUBTRACTS COMBAT LOSSES DUE TO CAS FROM | &
| ﬂ * RETURNING AIRCRAFT ;
‘ . #**t#tt#**t#t**#*.i**#***##******#***********#*********#t ;;Q
. DO FOR ALL WOC'S 2
I SET TIME e
bl CHECK AIRCRAFT TYPC e
[ FIND CORRECT TIME ai
| GET NEXT READY QUEUE
g REDUCE NUMBER OF AIRCRAFT RETURNING
- ERROR (NO SORTIES RETURNING) hy
. INCREMENT PREADY n
L INCREMENT PWOC o
. INCREMENT PCRC s
ERROR (NO TYPE 1 AIRCRAFT RETURNING)
3 2
, o
2 5
>
g e
i i
R
2 -3
‘ o
oy
O o ‘
N
. Ry
-“: .‘:s.
= .
_f..-“
. o
-:‘_ ‘.{_.
%)
N
ot S
< o
‘
o o
oo
‘2N .‘0:
A i
=02 )

M DRI S A R R e R R R L)
e \.}. > . \‘_\". -‘.*\‘. ...\“..‘,. SRS

W



."
.
o

r .%;" '

ey
Py

L, A

_‘J. LA

JHR

'.'.;'.f.: T TSP

SUBROUTINE RPTLOS(PNODE, BL,RL, POSB, POSR)

R R R R R R R L R R E R R RS R R RS R R R R R R E R R R R R R R RS R R R R R R R RS R

* RPTLOS CREATES SPOT LOSS REPORTS

B R R SRR E RS EE R R R R R R RS RS R E R R R R R R R R R R R R R R R R R R R R R R R N R RN

* INPUT

* PNODE - POINTER TO NODE STRUCTURE

* BL - ARRAY OF BLUE WEAPON SYSTEM LOSSES
* RL - ARRAY OF RED WEAPON SYSTEM LOSSES

R R E R R RS R SR R E R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R RERE SRR

INITIALIZE SPOT REPORT
INITIALIZE MULTIPLIER INDICES
TEST FOR RANDOM EFFECTS REQUIRED

CREATE BLUE AND RED RANDOM NUMBERS

COPY LOSSES
COPY POSTURES
TEST FOR RANDOM MESSAGE DELAY REQUIRED

PUT MESSAGES ON THE FUTURE QUEUE IN TIME ORDER

- 210

O R AT A L L L R I eyt e e
- -".Q‘W. Ly .‘. '. (. \l-‘ ."\\ . ""‘- ..( I '.: ‘.\'.-‘ .%‘-‘. .

>

Y WIS

e e N e N e N N
J' .r o .'.\ ‘.'\f..' CACs % "




‘v

R Py TR S W

N A

‘:":'I '-'

Ry

»

N L

Aty
»

‘

tig ™ 4 - = ” ’ o >
L3, N 4 S N AR A LSRN Lk e VW at a¥al e St A SR o N N X i P P Juge- Aps.. -

SUBROUTINE RANMSG(PNODE, POMP)
GET COMMONS : :
XXX EXEXR XX XX E XXX R K KR XX AR EXRX KR EK KX E AKX KX X KX XA E XA XX XXX R XX KK KX XK X X XK X XX
* RANMSG CREATES ALL THE MESSAGES FOR A NODE THAT ARE CLASSIFIED
* .AS RANDOM. (IE PROCESS NUMBERS 3800, 4800, 5800, 6800, 7800,
* 5900, AND 7900.
Xk k¥ ok ok ok ok %k Xk ok %k ok Kk ok 3k ok %k ok %k %k %k ok %k 3k % %k ok 5k ok k %K ok ok K Kk Kk %k Kk k k KKk kK KX KkEKKKKKKkXKKEKKXKKX
TEST FOR FIRST TIME TO INITIALIZE NODE'S RANDOM QUEUE
GET NEXT POUT
TEST FOR TIME TO SEND RANDOM MESSAGES
SET UP GENERIC MESSAGE FOR NEXT RANDOM TIME
GET NEXT RANDOM MESSAGE

211

— e 3

I ARRR RN
S

o
.
‘v 7}

T
'v_-.'\'t

NN

. .. " "
P
+ "v bt ':".". v'-'.\

.

R

P

[4
!.:. .l“

-
)
.

’
A
K

(RS

"

-
Jﬁi



BLOCK DATA FRATIO

EER R KRR RN R R RN R B R R AR E R AR KA AR R KRR R AR KR A AR S KA RN TR R KK
* DATA FOR THE GENERIC TYPE UNIT COMBAT DATA

* PFOR BOTH RED AND BLUE FORCES

AR R AR KRR R R A RS R R A AR RN KRR AR KRR R KRR R R KK KR KRR KRR AR KKK KKK
ENGAGEMENT RATES

TYPICAL NUMBER OF TYPES IN A UNIT

CONTROL SIZES

ALLOCATION OF RED AGAINST BLUE

ALLOCTATION OF BLUE AGAINST RED

PK RED AGAINST BLUE

PK BLUE AGAINST RED

Lig 1

LS
rf"l, "'-’)'

m

XA
e

1705

o oeoe

.

etet.
LA
X o' 0

‘I

200 A,

XN

L
O l'l' l'D

'n’:

L]
Y
?




PR RATE TR AR ISR DR TR W) ' 't ¢ Ba* Ba® 0y 0y Jda Ve ug- ba U e 8o s 4 “ath ata gie gte ghdgid gt

I (o

PROPOSED
DISTRIBUTION
. IDA PAPER P-1882

'c3 EVAL MODEL DEVELOPMENT AND TEST
Volume II
Programmers Manual

7R =3 R

75 Copies .3\'
E. Copies o

DEPARTMENT OF DEFENSE

- Office Joint Chiefs of Staff
Washington, DC 20301-5000

,l'_‘l’" I"'.

A ATTN: Dr. Robert Fallon, Office of Director, Command Control 12 "
| . and Communications Systems S
Dr. William G. Lese, JAD
LTC Joseph M. Cummings, USA, JAD
CPT W. L. Butler, USN, J-3
LTC J. P. Morrison, USAF,J-4
. CDR T. R. Sheffield, USN, J-5
ii Directorate of Information and Resource Management 2

Pt
v

O = )

Office of the Under Secretary of Defense
for Research and Engineering X
Room 3D139, The Pentagon N
Washington, DC 20301 :ft

b b ]

!! ATTN: Mr. James Bain, C3I 1
. Director

. Defense Intelligence Agency

-~ Washington, DC 20301-6111

- ATTN: Mr. A. J. Straub, (Pompino Plaza 1023) 1

P A
'.v'.'

A

Office of the Secretary of Defense
,- OUSDRE (DoD-IDA Managment Office)
o 1801 N. Beauregard Street
* Alexandria, VA 22311

- v e -,
|
|

—
-

ATTN: Col T. L. Ricketts

L A .
N .
.l'l LA

~ % v

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

N v e
X
rS

L

Cdas
A

T

DL-1

y 7‘.1
(9% s

A




E AN

)

- - —r—
.« . . 2 " . N »

>
ol

1

P

&

ot

CLARSTLAT AT T

e AL AL S o R ot Sl i o it S ATl B LA A SR e v P et s Ver Boc peS ARl A abi sl e e

DEPARTMENT OF THE ARMY

Deputy Chief of Staff for Operations and Plans

Room 3C542, The Pentagon
Washington, DC 20310-0403

ATTN: Maj W. E. Ward, USA
Mr. Hunter Woodall, DCS/RDA

DEPARTMENT OF THE NAVY

Chief of Naval Operations
Department of the Navy
Room 4E549, The Pentagon
Washington, DC 20350

ATTN: CDR D. L. McKinney, USN NOP

Commander
Naval Postgraduate School
Monterey, CA 93940

ATTN: Prof Michael G. Sovereign, Chairman
Command, Control and Communications

HQ, U. S. Marine Corps
Columbia Pike and Arlington Ridge Road
Arlington, VA 22204

ATTN: LTC T. L. Wiltkerson, Office of the Deputy Chief of Staff

Plans, Policy and Operations (MD-P)

Commander
Naval Postgraduage School

. Monterey, CA 93940

ATTN: Prof Michael G. Sovereign
Chairman, Command, Control and Communications

DEPARTMENT OF THE AIR FORCE

- Deputy Chief of Staff, Operations, Plans & Readiness

Department of the Air Force
Washington, DC 20330

ATTN: LTC M. H. Long, AFXOX
CIVILIAN CONTRACTORS

Applications Research Corporation
330 S. Ludlow Street
Dayton, OH 45402

ATTN: Mr. Rodney B. Beach

DL-2




'1" [

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

ATTN:

Gen
Mr.
Mr.
Mr.
Or.
Dr.
Mr.
Mr.
Dr.
Mr.
Mr.
Mr.
Dr.
Dr.
Or.
Dr.

W. Y. Smith

S. J. Deitchman

R. Pirie

A. R. Barbeau
William J. Schultis
Harry Williams
Robert F. Robinson
Joseph W. Stahl

J. Bracken

J. L. Freeh

E. Kerlin

A. 0. Kresse

D. L. Ockerman

E. S. Parkin

F. R. Riddell

V. A. Utgoff

Miss E. Doherty
Control and Distribution

oL-3

N b pimd b b b ot b ek b ok ph b et e b i b

(
‘.‘ -"\’. i r-‘t a1




- &
e -.a

-
VAR S SR BELIL SR O TR P AN (R AT N ST PR ey



